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Abstract. While the success of deep learning relies on large amounts of
training datasets, data is often limited in privacy-sensitive domains. To
address this challenge, generative model learning with differential privacy
has emerged as a solution to train private generative models for desen-
sitized data generation. However, the quality of the images generated
by existing methods is limited due to the complexity of modeling data
distribution. We build on the success of diffusion models and introduce
DP-SAD, which trains a private diffusion model by a stochastic adver-
sarial distillation method. Specifically, we first train a diffusion model as
a teacher and then train a student by distillation, in which we achieve
differential privacy by adding noise to the gradients from other models
to the student. For better generation quality, we introduce a discrimina-
tor to distinguish whether an image is from the teacher or the student,
which forms the adversarial training. Extensive experiments and analysis
clearly demonstrate the effectiveness of our proposed method.

Keywords: Generative models · Diffusion models · Differential privacy
· Adversarial distillation

1 Introduction

Data sharing is essential for the development of deep learning, especially com-
puter vision. However, in many application contexts, the sharing of data is re-
stricted owing to its confidential nature (such as personal information on mobile
devices, medical records, and financial transactions) along with strict regulatory
requirements, thereby substantially impeding the advancement of technology.
Data generation with differential privacy (DP) [9,10] can be a solution for data
release without compromising privacy, where only a sanitized form of the data
is publicly released. This sanitized synthetic data can be used as a substitute
for actual data, analyzed using standard toolchains, and openly shared with
the public, promoting technological progress and reproducible research in areas
involving sensitive information.
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Existing differentially private generative methods mainly focus on develop-
ing privacy-preserving generative adversarial networks (GANs), as initially in-
troduced by [12]. They typically employ either differentially private stochastic
gradient descent (DPSGD) [1], or the private aggregation of teacher ensembles
(PATE) [30]. DPSGD-based methods [3,5,8,37] achieved DP by perturbing the
gradients in each iteration and PATE-based methods [18,24,34] achieved DP by
aggregating noise labels from teachers. These methods provided an alternative
to direct data release by releasing well-trained generative models that users can
use to generate data for their own downstream tasks.

However, generating high-utility data while ensuring differential privacy guar-
antees presents a significant challenge. There are three main shortcomings: (i)
GANs are known to be considerably difficult to train, which becomes even harder
when considering the privacy constraints; (ii) As the dimensionality of the data
or the network escalates, an augmented quantity of noise is necessitated to at-
tain an equivalent degree of privacy, potentially engendering more pronounced
declines in performance; (iii) adding DP noise directly to all gradients introduces
too much randomness, which causes damage to the quality of the generated data.

With the advent of diffusion models [16], some works [8, 11, 26] wanted to
address the above shortcomings by training privacy-preserving diffusion models.
Despite some achievements, it leads to new problems, where training diffusion
models with differentially private algorithms (e.g. DPSGD) directly leads to
excessive privacy consumption and requires pre-training on large datasets.

In this work, we abandon GANs and train a privacy-preserving diffusion
model with a stochastic adversarial distillation method. As shown in Fig. 1, in
contrast to existing methods, we cleverly utilize the time step of the diffusion
models to dilute the effect of DP noise and combine diffusion distillation to obtain
a more stable training process. Moreover, we add a discriminator to determine
whether an image is generated by the teacher or the student, which can accelerate
the convergence process while enhancing the quality of the data generated by
the model. As an added benefit, in contrast to other DPSGD-based methods
that require a large batch size to minimize the effect of DP noise, our method
can take a smaller batch size and a larger time step to achieve the same effect,
which allows our method to be trained in resource-constrained scenarios.

In conclusion, our DP-SAD adeptly generates privacy-preserving images by
incorporating three principal components. Firstly, it employs the time step of
diffusion models to reduce the impact of DP noise, while maintaining privacy
without detriment to image quality. Secondly, the introduction of a discriminator
facilitates adversarial training with the student model, thereby augmenting the
student model’s performance. Lastly, by invoking the chain rule of gradients and
capitalizing on the post-processing property of differential privacy, our method
effectively minimizes the introduction of randomness. These strategic implemen-
tations collectively ensure the generation of high-utility, privacy-preserving im-
ages, underscoring the efficacy and innovation of our DP-SAD.

We summarize our main contributions as follows: i) we propose a differ-
entially private generative modeling framework named DP-SAD for effective
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Fig. 1: Overview of our DP-SAD. We first train a teacher model ψ using the private
data without protection. After that, we train a student model with the private data and
the fixed teacher model in a distillation manner. In addition, we add a discriminator and
view the student model as a generator to form adversarial training. Finally, for privacy,
we achieve differential privacy by clipping with bound C and adding noise N to the
gradients during backpropagation. Furthermore, we accelerate the training by using
the gradient of a random time step CLIP (gr, C) instead of averaging the gradients
of all time steps in the reaction process 1

T

∑T
t=1 CLIP (gt, C), where CLIP (∗, C) =

∗/max(1, ||∗||2
C

).

privacy-preserving data generation; ii) we cleverly utilize the properties of the
diffusion models to reduce the impact of DP noise. Combined with a discrimi-
nator, efficient and high-performance model training is achieved while allowing
for resource-constrained training as an added benefit; iii) we conduct extensive
experiments and analysis to demonstrate the effectiveness of our method.

2 Related Works

2.1 Diffusion Distillation.

In the advancing field of diffusion models, distillation has become a key method
for enhancing model efficiency and deployment on resource-constrained plat-
forms. Several notable works have contributed to this area by focusing on dif-
ferent aspects of distillation and application. Google’s works [22, 31, 38] have
significantly pushed the boundaries in rapid sampling and mobile device applica-
bility. These studies highlight the potential for real-time, high-quality generative
tasks on handheld devices. Further, [28,32] explored the optimization of guidance
mechanisms and adversarial training in the distillation process, offering insights
into the refinement of model efficiency and robustness. Innovations in data-free
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distillation and quality enhancement are showcased in works like [13,25], which
proposed novel methods for minimizing dependency on large datasets and im-
proving image resolution, respectively. Additionally, [19, 20] presented methods
for reducing noise in the distillation process and enabling real-time interactive
generation, highlighting the diversity of challenges and solutions in the diffusion
model ecosystem. These efficient, high-quality diffusion distillation methods in-
spired our work, which, to our best knowledge, is the first to train a privacy-
preserving diffusion model without pertaining.

2.2 Differentially Private Generative Models.

Training a DP generative model is a popular solution to the problem of privacy
leakage in data sharing. Existing methods typically adopt DPSGD [3, 5, 8, 11,
26, 37] or PATE [18, 24, 34] equip the generative models with rigorous privacy
guarantees. These methods, despite significant breakthroughs in the training
stability problem and the visual quality problem, are far from the data utility
of standardized. This is because the effect of differential privacy noise is not
well minimized. Utilizing the post-processing of DP does reduce the number of
additions to the noise, but does not inherently reduce its effect on the gradient.
In our work, we cleverly utilize the time step of the diffusion model to dilute the
effect of DP noise to improve model performance and training stability.

3 Background

3.1 Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic models [16] are recently emerged generative
models that have achieved state-of-the-art results across diverse computer vision
problems [2, 35]. It contains both forward and reverse processes. The forward
process is a Markov chain that sequentially adds noise to a real data sample x0

to obtain a pure noise distribution xT , which can be understood as a labeling
process. The reverse process learns the noise labels for each step in the forward
process with a deep neural network to denoise xT back to x0.

Given a real data sample x0, we define a posterior probability according to
a variance schedule α[1...T ] as follows,

q(xt|xt−1) = N (xt;
√
αtxt−1, 1− αtI), (1)

where N (x;µ, σ2) represents x obeys a Gaussian distribution with µ as the mean
and σ2 as the variance. The reverse process is parameterized by a deep neural
network ϵθ(xt, t) which predicts the noise ϵ added in the forward process at step
t. So a simplified training loss to learn θ is as follows,

L(θ) = Ex0,t[||ϵ− ϵθ(xt, t)||2], (2)

where xt =
√∏

i αix0+
√
1−

∏
i αiϵ. In inference time, model ϵθ(·) can denoise

a pure noise distribution to a realistic image.



Abbreviated paper title 5

3.2 Differential Privacy

Differential privacy is currently an industry standard of privacy proposed by [9,
10]. It limits the extent to which the output distribution of a randomized algo-
rithm changes in response to input changes. The following definition describes
how DP provides rigorous privacy guarantees clearly.

Definition 1 (Differential Privacy). A randomized mechanism A with do-
main R is (ε, δ)-differential privacy, if for all O ⊆ R and any adjacent datasets
D and D′ :

Pr[A(D) ∈ O] ≤ eε · Pr [A (D′) ∈ O] + δ, (3)

where adjacent datasets D and D′ differ from each other with only one training
example. ε is the privacy budget, which measures the degree of privacy protec-
tion of the algorithm, with smaller representing better privacy protection, and δ
represents the failure probability of the algorithm, which is usually set to 10−5.

Post-processing [10] is an important nature for privacy protection, which is
described as follows:

Theorem 1 (Post-processing). If mechanism A satisfies (ε, δ)-DP, the com-
position of a data-independent function F with A also satisfies (ε, δ)-DP.

4 Method

4.1 Problem Formulation

Given a dataset D = {xi}ni=1, the objective is to train a privacy-preserving gen-
erative model ϵθ with parameter θ for high-utility data generation. To achieve
this, we introduce a differentially private generative modeling method named
DP-SAD, which contains three parts: teacher model ϵψ, student model ϵθ and
discriminator ϵϕ. The training process can be formulated by minimizing an en-
ergy function E as follows,

E(ϵθ;D) = Et(ϵψ;D) + Es(ϵθ, ϵϕ; ϵψ)
= Et(ϵψ;D) + Ea(ϵϕ; ϵψ, ϵθ) + Ed(ϵθ; ϵψ, ϵϕ),

(4)

where teacher energy Et and student energy Es are used to evaluate knowl-
edge extraction and knowledge transfer respectively. We solve it via three steps:
teacher learning to achieve ϵψ, adversarial learning to get ϵϕ and stochastic step
learning to transfer knowledge from ϵψ to ϵθ. We emphasize that, unlike [16]
where the model predicts noise added in the forward process, in this paper,
models (ϵψ, ϵθ) predict the image of next time step, and the two are equivalent.

4.2 Teacher Learning

We first train a teacher model using private data without any protection. This
model is only used in the student training process to guide the student and is not
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Fig. 2: Left: Illustration of the proposed discriminator. We concatenate the outputs
of the teacher and student models, utilizing these combined outputs as the inputs for
the discriminator. The discriminator distinguishes whether the input image originates
from the teacher model or the student model. Right: Use the gradients of step r as a
substitute for the average gradients over T steps. By obtaining xr through the forward
process, we prevent the teacher from inferring from noise to xr, thereby saving com-
putational time.

released. We follow the standard classifier-free diffusion guidance method [17] to
solve the energy Et(ϵψ;D).

xt = S((1 + w)ϵψ(xt−1, y)− wϵψ(xt−1)), (5)

where S is a sampler function, w is a hyperparameter and y is the label of xt−1.
In this way, we obtain almost the same performance as the classifier-guided
diffusion model without the need for a classifier. For datasets that are either
unlabeled or multi-labeled, we employ unsupervised classification methods (e.g.,
k-means [27]) to assign labels. In our experiments, we first utilize MoCo [7] for
feature extraction, followed by the application of k-means for clustering.

4.3 Adversarial Learning

We treat the student model ϵθ as a generator and introduce a discriminator ϵϕ to
form adversarial training. The discriminator endeavors to categorize its inputs
as either originating from the teacher or the student model by minimizing the
following objective function [12]:

Li,tadv = log ϵϕ(xψ,i,t−1) + log(1− ϵϕ(xθ,i,t−1)), (6)

where xψ,i,t−1 and xθ,i,t−1 correspond to the i − th outputs of the teacher and
student models at time step t−1, respectively. Simultaneously, the student model
aims to produce outputs closely resembling those of the teacher model, to deceive
the discriminator, by minimizing the loss function Li,tadv.
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Since our teacher model is fixed, the first term in the loss function can be
removed when updating the student model. Therefore, our loss function can be
simplified as follows:

Li,tadv = log(1− ϵϕ(xθ,i,t−1)). (7)

To maintain the same format as Eq (7) when updating the discriminator, we
concatenate the outputs of the teacher and student models together as the input
for the discriminator as shown in the left of Fig. 2. The output corresponding to
the teacher model is labeled as [1, 0], while the output from the student model
is labeled as [0, 1]. So the adversarial loss can be formulated as follows:

Li,tadv = log(1− ϵϕ(C(xψ,i,t−1, xθ,i,t−1))). (8)

where C represents the concatenation function. The loss function (Ea(ϵϕ; ϵψ, ϵθ))
for a batch of data over the entire time steps T is given as:

Ladv =
1

B

B∑
i=1

(
1

T

T∑
t=1

Li,tadv

)
=

1

B · T

B∑
i=1

T∑
t=1

Li,tadv, (9)

where B is the batch size.

4.4 Stochastic Step Distillation

As shown in Fig. 1, in addition to an adversarial loss Ladv, there is also dis-
tillation loss between the outputs of the student model and the teacher model,
as well as between the outputs of the student model and the original data. For
this process, we adhere to the design and training method delineated in [15], a
summary of which is provided herein. In time step t, we can formulate the loss
as follows:

Li,tdis = LMSE(xψ,i,t−1, xθ,i,t−1) + LMSE(xi,t−1, xθ,i,t−1), (10)

where LMSE represents the mean squared error (MSE) loss. The distillation
loss (Ed(ϵθ; ϵψ, ϵϕ)) for a batch of data over the entire time steps T is given as:

Ldis =
1

B

B∑
i=1

(
1

T

T∑
t=1

Li,tdis

)
=

1

B · T

B∑
i=1

T∑
t=1

Li,tdis. (11)

Based on the above analysis, we incorporate the adversarial loss Ladv in
Eq. (9) and the distillation loss Ldis in Eq. (11) into our final loss function. Our
whole framework is trained end-to-end by the following objective function:

L = Ldis + λLadv, (12)

where λ is a trade-off weight. We set it as 1 in our experiments.
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Without any protection, we calculate the gradients for backpropagation as
follows:

g =
∂L
∂θ

=
1

B · T

B∑
i=1

T∑
t=1

(
∂(Li,tdis + λLi,tadv)

∂θ

)
. (13)

Directly updating the student model with gradients g may lead to privacy leak-
age. Therefore, we implement differential privacy protection by clipping it and
adding noise. The specific process is as follows:

ḡ =
1

B · T

B∑
i=1

T∑
t=1

(
CLIP

(
∂(Li,tdis + λLi,tadv)

∂θ
, C

)
+N (0, σ2C2I)

)

=
1

B · T

B∑
i=1

T∑
t=1

(
CLIP

(
∂(Li,tdis + λLi,tadv)

∂θ
, C

))
+

N (0, σ2C2I)
B · T

=
1

B

B∑
i=1

(
1

T

T∑
t=1

(
CLIP

(
∂(Li,tdis + λLi,tadv)

∂θ
, C

)))
+

N (0, σ2C2I)
B · T

,

(14)

where CLIP (∗, C) = ∗/max(1, ||∗||2
C ). In our experiments, it was observed that

an increase in the value of T correlates with an enhancement in data quality.
Nonetheless, as dictated by Eq (14), each sample is subjected to T steps of
diffusion throughout the training process, resulting in inefficiencies. To mitigate
this, we substitute the average of the gradients over all T time steps with the
gradient from a randomly selected time step.

ḡ ≈ 1

B

B∑
i=1

(
CLIP

(
∂(Li,rdis + λLi,radv)

∂θ
, C

))
+

N (0, σ2C2I)
B · T

, (15)

where r is a number randomly selected from 0 to T . Compared to existing
methods [8, 11, 26] that directly employ DPSGD to train diffusion models, our
method uses the time step T to dilute the impact of noise without compromising
privacy protection.

Based on previous work [5], we find that directly clipping and adding noise
to each gradient introduces more randomness, leading to a decrease in the con-
vergence speed of training. According to the properties of the chain rule for
gradients, we have:

∂(Li,rdis + λLi,radv)
∂θ

=
∂(Li,rdis + λLi,radv)

∂xθ,i,r
· ∂xθ,i,r

∂θ
. (16)

Combining the post-processing property of differential privacy, we can modify
Eq (15) as follows:

ḡ ≈ 1

B

B∑
i=1

(
CLIP

(
∂(Li,rdis + λLi,radv)

∂xθ,i,r−1
, C

)
· ∂xθ,i,r−1

∂θ

)
+

N (0, σ2C2I)
B · T

. (17)

By truncating randomness in this manner, we only need to introduce randomness
to xθ,i,r−1 once to achieve the same level of privacy protection.
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4.5 Privacy Analysis

In this section, we analyze the differential privacy bound for our proposed DP-
SAD and we leverage the Renyi differential privacy (RDP) [29] and Gaussian
mechanism [10] in our analysis.

Definition 2 (Rényi Differential Privacy). A randomized mechanism A is
(q, ε)-RDP with q > 1 if for any adjacent datasets D and D′ :

Dq(A(D)||A(D′)) =
1

q − 1
logE(x∼A(D))

[(
Pr[A(D) = x]

Pr[A(D′) = x]

)q−1
]
≤ ε. (18)

Theorem 2 (Convert RDP to DP). A (q, ε)-RDP mechanism A also sat-
isfies (ε+ log q−1

q − log δ+log q
q−1 , δ)-DP.

Theorem 3 (Gaussian Mechanism). Let f be a function with sensitive being
Sf = max

D,D′
||f(D)− f(D′)||2 over all adjacent datasets D and D′. The Gaussian

mechanism A with adding noise to the output of f :A(x) = f(x) + N (0, σ2) is

(q,
qS2

f

2σ2 )-RDP.

We first calculate the sensitivity of the function that implements differential
privacy. Then, based on the definitions and theories mentioned above, we derive
the privacy bound of our DP-SAD.

Lemma 1. For any neighboring gradient vectors ḡ, ḡ′ differing by the gradient
vector of one data with length s, the l2 sensitivity is 2C

√
s after performing

normalization with normalization bound C.

Proof. The l2 sensitivity is the max change in l2 norm caused by the input
change. For the vectors after normalization with norm bound C, each dimen-
sion has a maximum value of C and a minimum value of −C. In the worst case,
the difference of one data makes the gradient of all dimensions change from the
maximum value C to the minimum value −C, the change in l2 norm equals√
(2C)2s = 2C

√
s.

We assume that the batch size is B, the number of iterations is N , and the
variance of the noise added each time is σ2.

Theorem 4. DP-SAD guatantees ( 2C
2sBNλ
σ2 +log λ−1

λ − log δ+log λ
λ−1 , δ)-DP for all

λ ≥ 1 and δ ∈ (0, 1).

Proof. For each data, the gradient clipping and noise addition implements a
Gaussian mechanism which guarantees (λ, 2C2sλ

σ2 )-RDP (Theorem 3 & Lemma 1).
So the DP-SAD satisfies (λ, 2C2sBNλ

σ2 )-RDP, which is ( 2C
2sBNλ
σ2 + log λ−1

λ −
log δ+log λ

λ−1 , δ)-DP (Theorem 2).
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Fig. 3: Visualization results of DP-GAN, GS-WGAN, DP-MERF, P3GM, DataLens,
DPGEN, DP-LDM and our DP-SAD on CelebA at 32×32 and 64×64 resolutions.

5 Experiments

To verify the effectiveness of our proposed DP-SAD, we compare it with 11 state-
of-the-art methods and evaluate the data utility and visual quality on three image
datasets. To ensure fair comparisons, our experiments adopt the same settings
as these baselines and cite results from their original papers.

5.1 Experimental Setup

In this section, we provide a brief description of the experimental settings. For
more in-depth experimental details, please refer to the supplementary material.

Datasets. We conduct experiments on three image datasets, including MNIST [21],
FashionMNIST (FMNIST) [36] and CelebA [23]. To further refine our analysis,
we derive two subsets from CelebA, namely CelebA-H and CelebA-G, which are
created with hair color (black/blonde/brown) and gender as the label.

Baselines. We compare our DP-SAD with 11 state-of-the-art methods, includ-
ing DP-GAN [37], PATE-GAN [18], DP-MERF [14], GS-WGAN [5], P3GM [33],
G-PATE [24], DataLens [34], DPGEN [6], PSG [4], DP-DM [8] and DP-LDM [26].

Metrics. We evaluate our DP-SAD as well as baselines in terms of perceptual
scores and classification accuracy under the same different privacy budget con-
straints. In particular, perceptual scores are evaluated by Inception Score (IS)
and Frechet Inception Distance (FID), which are standard metrics for the visual
quality of images. Classification accuracy is evaluated by training a classifier
with the generated data and testing it on real test datasets

5.2 Experimental Results

Visual comparisons of generated data. We furnish visual evidence to sub-
stantiate the superior quality of data generated through our method. In Fig. 3,
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Fig. 4: Generated samples by DP-SAD on CelebA-G and CelebA-H under different
privacy budget (ε = 1 and ε = 10).

we juxtapose our visualization outcomes against those derived from other bench-
mark models. Notably, even when operating under a stringent privacy budget
condition (ε = 104), the grayscale images produced by DP-GAN, GS-WGAN,
DP-MERF, and P3GM exhibit a noticeable degree of blurriness. We underscore
the intrinsic advantage of grayscale images, which, due to their reduced dimen-
sionality, facilitate a more manageable equilibrium between data quality and
privacy preservation. In contrast, the color images generated by DPGEN and
DP-LDM showcase a higher visual quality relative to DataLens, albeit with a
lack of detailed facial features. Against this backdrop, the images emanated from
our DP-SAD model distinguish themselves by presenting a more lifelike appear-
ance coupled with enhanced facial detail, thereby validating the efficacy of our
proposed method.

Image generated by DP-SAD. We present the visual quality evaluation re-
sults in Fig. 4, where all of the images were generated by DP-SAD. We find that
samples at ε = 10 possess more facial details compared to samples at ε = 1.
Compared to the images of 64×64 resolution presented in Fig. 3, the results
of DP-SAD on images of the same resolution manifest a significantly enhanced
realism and display a markedly improved facial structure. This observation high-
lights the ability of DP-SAD to produce more lifelike and structurally accurate
facial images even under more stringent privacy settings, further evidencing the
superior performance of our proposed method in generating high-quality images.

Perceptual scores comparisons. To further substantiate the efficacy of our
DP-SAD, we conducted evaluations using two established metrics: IS and FID,
as previously discussed. Due to the absence of experimental data for PSG and
DP-DM, our comparative analysis was limited to the remaining 9 methods. The
outcomes of this comparison are detailed in Tab. 1. A superior IS value is in-
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Table 1: Perceptual scores comparisons with 9 state-of-the-art baselines on CelebA at
64 × 64 resolution under different privacy budget ε.

Method ε IS↑ FID↓
Without pre-training
DP-GAN (arXiv’18) 104 1.00 403.94
PATE-GAN (ICLR’19) 104 1.00 397.62
GS-WGAN (NeurIPS’20) 104 1.00 384.78
DP-MERF (AISTATS’21) 104 1.36 327.24
P3GM (ICDE’21) 104 1.37 435.60
G-PATE (NeurIPS’21) 10 1.37 305.92
DataLens (CCS’21) 10 1.42 320.84
DPGEN (CVPR’22) 10 1.48 55.910
With pre-training
DP-LDM (arXiv’23) 10 N/A 14.300
DP-SAD (Ours) 10 2.37 11.260

dicative of enhanced quality in the generated samples, whereas a diminished FID
score suggests a closer resemblance to authentic images. Among the evaluated
baselines, our technique distinguished itself by recording the highest IS value
of 2.37 and the lowest FID score of 11.260 under the most restrictive privacy
budget of 10. This can be attributed to two factors: one is that we utilized the
diffusion time steps to dilute the impact of DP noise, and the other is that we
incorporated a discriminator to form adversarial training. The combination of
these two aspects has improved the performance of the model.

Downstream task performance comparison. Furthermore, we compare our
DP-SAD with existing DP generative methods on classification tasks under two
privacy budget settings ε = 1 and ε = 10 on MNIST, FMNIST, CelebA-H and
CelebA-G. We evaluate the classification accuracy of the classifiers trained on
the generated data, and the results are summarized in Tab. 2. It is important to
note that our method does not require pre-training with any dataset. Compared
to methods without pre-training, we observe consistent and significant improve-
ments of around 4-6 percentage points across different configurations. Especially
for complex tasks (CelebA) where ε = 1, our method outperforms other meth-
ods by at least 16 percentage points. Furthermore, when compared to the two
methods with pre-training, our method consistently achieves optimal results in
most settings. This improvement is attributed to the fact that we chose a more
stable diffusion model instead of GANs and diluted the impact of DP noise with
time steps to achieve a better balance between privacy and data utility. These
results suggest that our DP-SAD can effectively generate high-quality images
with practical applications.
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Table 2: Classification accuracy comparisons with 11 state-of-the-art baselines under
different privacy budget ε.

Method
MNIST FMNIST CelebA-H CelebA-G

ε=1 ε=10 ε=1 ε=10 ε=1 ε=10 ε=1 ε=10
Without pre-training
DP-GAN 0.4036 0.8011 0.1053 0.6098 0.5330 0.5211 0.3447 0.3920
PATE-GAN 0.4168 0.6667 0.4222 0.6218 0.6068 0.6535 0.3789 0.3900
GS-WGAN 0.1432 0.8075 0.1661 0.6579 0.5901 0.6136 0.4203 0.5225
DP-MERF 0.6367 0.6738 0.5862 0.6162 0.5936 0.6082 0.4413 0.4489
P3GM 0.7369 0.7981 0.7223 0.7480 0.5673 0.5884 0.4532 0.4858
G-PATE 0.5810 0.8092 0.5567 0.6934 0.6702 0.6897 0.4985 0.6217
DataLens 0.7123 0.8066 0.6478 0.7061 0.7058 0.7287 0.6061 0.6224
DPGEN 0.9046 0.9357 0.8283 0.8784 0.6999 0.8835 0.6614 0.8147
PSG 0.8090 0.9560 0.7020 0.7770 N/A N/A N/A N/A
With pre-training
DP-DM 0.9520 0.9810 0.7940 0.8620 N/A N/A N/A N/A
DP-LDM 0.9590 0.9740 N/A N/A N/A N/A N/A N/A
DP-SAD (Ours) 0.9621 0.9761 0.8437 0.8960 0.9150 0.9280 0.8263 0.8414

Fig. 5: Left: Perceptual scores on CelebA under different time steps. Right: Perceptual
scores on CelebA under different model conditioning settings (w/o: without model
conditioning, w/s: with student conditioning, w/d: with discriminator conditioning,
w/b: with both model conditioning).

5.3 Ablation Studies

After the promising performance is achieved, we further analyze the impact of
each component of our method, including the time step T , the model condition-
ing and the trade-off weight λ.
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Table 3: Perceptual scores on CelebA under different trade-off weight λ.

λ 0.0 0.2 0.5 1.0 2.0 4.0

FID 14.63 13.41 12.38 11.68 12.11 13.55

IS 2.12 2.18 2.26 2.37 2.35 2.31

Impact of time step. To investigate the impact of the time step on the trade-
off between privacy and data utility, we compare the perceptual scores obtained
when the time step T takes different values under the same privacy budget
ε = 10. The results are shown in Fig. 5 left. As we anticipated, with the increase
in T , the IS increases and the FID decreases, which collectively indicates an
improvement in image quality. This is because, on one hand, as demonstrated
by Eq. (17), an increase in T will reduce the influence of noise on the gradient;
on the other hand, an increase in T will enhance the generative effect of the
diffusion model itself. Although increasing T improves performance, it reduces
training efficiency. Therefore, in other parts of experiments, we choose T = 500.
Impact of model conditioning. To explore the effect of the model condition-
ing, including student conditioning and discriminator conditioning, we conduct
experiments with/without model conditioning under the same privacy budget
ε = 10. The results are shown in Fig. 5 right. We observe that model conditioning
enhances results. Notably, student conditioning outperforms discriminator con-
ditioning, and the combination of both student conditioning and discriminator
conditioning yields the best results. An additional benefit of student condition-
ing is that the data inherently comes with labels when conducting downstream
tasks, e.g., classifier training. Labeling data through a pre-trained model (trained
with private data without any protection) may lead to privacy leakage.
Impact of λ. To study the effect of λ on the quality of the generated images, we
train the student model with different trade-off weight λ under the same privacy
budget ε = 10. The results are presented in Tab. 3. As λ increases from 0 to
1, the image quality improves with the increase in λ, as the discriminative loss
Ladv drives the output distribution of the student model closer to that of the
teacher model. However, when λ exceeds 1, the image quality decreases with the
increase in λ. We speculate that this may be due to the larger discriminative loss
Ladv constraining the efficacy of Ldis. This also inspires our subsequent work,
suggesting that assigning different values to λ at different time steps might be
more beneficial for model training.

6 Conclusion

Direct data sharing may pose the risk of privacy leakage. To address this chal-
lenge, we proposed DP-SAD, a differentially private generative model trained
by a stochastic adversarial distillation method. It achieves differential privacy
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by clipping the gradients and adding noise. We ingeniously dilute the impact of
noise through the diffusion model’s time steps and incorporate a discriminator
to form adversarial training with the student model. This method endows our
model with superior performance compared to other methods. Furthermore, we
combine the chain rule of gradients with the post-processing property of differ-
ential privacy to reduce the introduction of randomness, which accelerates the
entire training process. Extensive experiments and analysis clearly demonstrate
the effectiveness of our proposed method.
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