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Abstract
While generative models have proved successful in many domains,

they may pose a privacy leakage risk in practical deployment. To

address this issue, differentially private generative model learn-

ing has emerged as a solution to train private generative models

for different downstream tasks. However, existing private genera-

tive modeling approaches face significant challenges in generating

high-dimensional data due to the inherent complexity involved

in modeling such data. In this work, we present a new private

generative modeling approach where samples are generated via

Hamiltonian dynamics with gradients of the private dataset es-

timated by a well-trained network. In the approach, we achieve

differential privacy by perturbing the projection vectors in the es-

timation of gradients with sliced score matching. In addition, we

enhance the reconstruction ability of the model by incorporating a

residual enhancement module during the score matching. For sam-

pling, we perform Hamiltonian dynamics with gradients estimated

by the well-trained network, allowing the sampled data close to

the private dataset’s manifold step by step. In this way, our model

is able to generate data with a resolution of 256×256. Extensive
experiments and analysis clearly demonstrate the effectiveness and

rationality of the proposed approach.
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1 Introduction
Generative models have become indispensable tools across a broad

spectrum of machine learning applications, such as image genera-

tion [4, 19, 21, 35, 36], text-to-image generator learning [2, 44] and

imitation learning [27]. However, according to previous works [17,

58], synthetic data generated by these models could lead to data pri-

vacy leakage, as shown in Fig. 1. This issue has attracted significant

research interest in developing approaches to protect privacy with-

out reducing the usefulness of the generated data. The challenge is

to find a proper balance between privacy and utility.

Differentially private (DP) [13, 14] generative modeling is an in-

tuitive idea for addressing the challenge of privacy leakage, which

trains DP generative models for privacy-preserving data genera-

tion. Many works [9, 20, 49, 56] adopt generative adversarial net-

works (GANs) [24] as the underlying generation backbone and in-

corporate the differential privacy into the training process, thereby

bounding the privacy budget of the resulting generator. However,
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Figure 1: Synthetic data generated by the generative model
trained with private data directly may contain sensitive in-
formation. To address that, we achieve differentially private
learning by private gradient estimation. Synthetic data gen-
erated by this generative model can be used for different
downstream tasks with privacy protection.

these GAN-based approaches rely on the assumption that the gen-

erator can generate the entire real records space to bootstrap the

training process and are difficult to converge. Recently, with the po-

tential of diffusion models [28] discovered, many works [10, 12, 39]

have begun to explore how to train a privacy-preserving diffusion

model. However, the extensive number of queries during training

significantly compromises privacy. Consequently, these approachs

necessitate thorough pre-training to minimize queries to private

data. These challenges culminate in the inability to produce high-

resolution images while preserving privacy.

Recent works in the field of generative modeling have under-

scored the promising capabilities of Energy-BasedModels (EBMs) [33]

for data generation. EBMs have been found to offer greater stability

compared to GANs and require fewer queries to converge in com-

parison to diffusion models [46, 47]. This observation suggests that

EBMs could serve as a solution to the challenges associated with

generating high-dimensional data. Additionally, we have discov-

ered that training EBMs with sliced score matching [45] effectively

integrates with the randomized response (RR) [52] mechanism,

which enables the achievement of differential privacy.

In this work, we propose the Private Gradient Estimation (PGE)

approach that learns to train a DP model to estimate the score of the

private data, as shown in Fig. 1, and synthesize privacy-preserving

images for downstream tasks. Instead of directly generating images,

we train a network to estimate the gradient of logarithmic data

density. Inspired by [26], we introduce a residual enhancement

module that incorporates masked vectors, obtained by encoding

𝒙 with a pre-trained VQGAN [15], into the features extracted by

the middle layer of the network 𝑞𝜃 to improve its reconstruction

ability, as shown in Fig. 2. We adopt sliced score matching to train

the network and achieve differential privacy by perturbing the pro-

jection vectors with RR. For sampling, as shown in Fig. 3, we design

a Markov Chain Monte Carlo (MCMC) sampling approach based on

Hamiltonian dynamics, which is more accurate than the commonly

used sampling approach based on Langevin dynamics. In section 4

and supplementary material, we provide privacy and convergence

analysis to support the effectiveness of our PGE further.

Our PGE approach effectively balances privacy and image quality

through four key components. First, it replaces GANs with EBMs to

better map sensitive data distributions, improving training stability.

Second, we enhance differential privacy by using RR for perturbing

proj ection vectors, which reduces randomness and boosts efficiency

compared to traditional noisy addition approachs. Third, a residual

enhancement module strengthens the network’s ability to generate

high-fidelity images. Finally, we use Hamiltonian dynamics-based

MCMC sampling for more accurate image synthesis. Together, these

elements create a solution that ensures both data privacy and high-

quality image generation.

Our paper makes several key contributions as follows: (1) we

propose the PGE approach, a differentially private generative mod-

eling approach that effectively captures the distribution of private

data while preserving valuable information. By leveraging Hamil-

tonian MCMC sampling, PGE can generate high-resolution images

up to 256x256 with exceptional visual quality and data utility; (2)

we introduce a residual enhancement module that can be flexibly

applied to enhance the reconstruction capabilities of other genera-

tive models; (3) we conduct a comprehensive analysis of the privacy

and convergence properties of PGE to validate its rationality and

effectiveness; (4) experimental results demonstrate that, compared

to other existing differentially private generative approaches, PGE

significantly improves both the visual quality and data utility of

the generated images.

2 Related Works
Differentially private learning. Differentially private learning

aims to ensure the training model is differentially private regarding

the private data. Existing approaches are typically based on differ-

entially private stochastic gradient descent (DPSGD) [1, 6, 9, 56],

which clipped and added noise to the gradients during the training

process, and private aggregation of teacher ensembles (PATE) [38,

43, 49], which used semi-supervised learning to transfer the knowl-

edge of the teacher ensemble to the student by a noisy aggregation.

Recent works [10, 23, 40] applied randomized response (RR) [52] to

the deep learning to achieve differentially private training. Despite

significant progress in balancing data privacy and model perfor-

mance, existing works are still far from optimal in the generative

tasks. This is mainly because existing works apply training ap-

proachs for discriminative tasks directly to generative tasks. In

contrast, we combine sliced score matching and randomized re-

sponse well to realize differentially private generative modeling.

Generative model learning.With the development of generative

techniques, recent works began to train generative models to gener-

ate data for downstream tasks. Recent works are typically based on

GANs [24] and DDPM [28]. GAN-based approaches [11, 42, 57] are

dedicated to improving training stability while improving the qual-

ity of the generated images. DDPM-based approaches [34, 41, 46]

are committed to improving image generation quality while in-

creasing generation speed. However, the instability of GANs and

the high number of queries of DDPM make them difficult to gener-

ate high-resolution images under private training. Recently, some

works [47, 55] have applied EBMs to generative tasks. It is more
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Figure 2: Overview of our PGE. We first sample some images 𝒙 from the private data distribution 𝑝 (𝒙). These images are then
fed into the network 𝑞𝜃 for prediction. Concurrently, we encode these images using a pre-trained VQGAN and incorporate the
masked version into the features extracted by the middle layer of 𝑞𝜃 . This enhances the image reconstruction capability of 𝑞𝜃 .
Following the prediction by 𝑞𝜃 , both 𝑞𝜃 (𝒙) and 𝑝 (𝒙) are projected for dimensionality reduction. During this process, we perturb
their projection vectors by RR to achieve DP. Specifically, ∇ log𝑝 (𝒙) is projected onto the 𝒗1 direction, while RR projects 𝑞𝜃 (𝒙)
onto the 𝒗1 direction with a probability of 𝑒𝜀/(𝑒𝜀 + 𝑘 − 1), and onto the other direction with a probability of 1/(𝑒𝜀 + 𝑘 − 1). Here, 𝑘
refers to the number of projection vectors. Finally, the network 𝑞𝜃 is updated by computing the loss between the predicted
distribution 𝑞𝜃 (𝒙) and the original distribution 𝑝 (𝒙).

stable than GANs and does not require as many queries as DDPM,

which makes it more suitable for private generative modeling.

Feature reconstruction. Feature reconstruction is used in many

domains and serves an important role.Masked autoencoder (MAE) [26]

have emerged as a cornerstone technique that significantly en-

hances unsupervised feature learning by reconstructing images

from masked inputs, showcasing improved efficiency in various

image processing tasks. Following this, [16, 51] extended MAE to

video processing, demonstrating reconstruction and feature ex-

traction can be employed to enhance the temporal consistency of

video frames. [5, 50] refined MAE applications in facial recognition,

leading to advancements in both recognition accuracy and image

quality. Face super-resolution [18, 29] can also be regarded as a

form of feature reconstruction, where the model learns the mapping

from low-dimensional data to high-dimensional data, reconstruct-

ing the missing information. Inspired by these works, we design a

residual enhancement module to enhance both image quality and

robustness of the model.

3 Preliminaries
Energy-based models (EBMs). EBMs capture dependencies by

associating a probability density function to each configuration

of the given variables. Given a known data distribution 𝑇 (𝒙), we
aim to fit it with a probabilistic model 𝐸 (𝜃 ; 𝒙) = exp(−𝐻 (𝜃 ; 𝒙))/𝑍𝜃 ,
where 𝐻 (𝜃 ;𝑥) is an energy function with parameter 𝜃 . As 𝐸 (𝜃 ; ·)
represents a probability distribution, it needs to be divided by a

normalizing constant 𝑍𝜃 =
∫
exp(−𝐻 (𝜃 ; 𝒙))𝑑𝒙 . 𝑍𝜃 is difficult to

calculate explicitly, but as it happens, the image generation process

in our paper only requires the gradient of logarithmic data density

∇ log𝐸 (𝜃 ; ·), which eliminates the need to compute it in our training.

Notably, it is easy to extend to the multi-dimensional case as long

as multiple variables are distributed independently of each other.

Differential privacy (DP). DP bounds the change in output distri-

bution caused by a small input difference for a randomized mecha-

nism. It can be described as follows: A randomized mechanism R
with domain N |𝑥 | and range A is (𝜀, 𝛿)-differential privacy, if for
any subset of outputs O ⊆ A and any adjacent datasets 𝐷 and 𝐷′ :

𝑃𝑟 [R(𝐷) ∈ O] ≤ 𝑒𝜀 · 𝑃𝑟
[
R
(
𝐷′

)
∈ O

]
+ 𝛿, (1)

where adjacent datasets 𝐷 and 𝐷′ differ from each other with only

one training example. 𝜀 is the privacy budget, where the smaller is

better, and 𝛿 is the failure probability of the mechanism R. In our

case, the randomized response mechanism enables the EBMs to sat-

isfy (𝜀, 0)-DP (or 𝜀-DP). Notably, DP is featured by post-processing

theorem and parallel composition theorem. The former could be

described as: If R satisfies (𝜀, 𝛿)-DP, R ◦ H will satisfy (𝜀, 𝛿)-DP
for any functionH with ◦ denoting the composition operator. And

the latter could be described as: If each randomized mechanism

R𝑖 in {R𝑖 }𝑛𝑖=1 satisfies (𝜀, 𝛿)-DP, then for any division of a dataset

𝐷 = {𝐷𝑖 }𝑛𝑖=1, the sequence of outputs {R𝑖 (𝐷𝑖 )}𝑛𝑖=1 satisfies (𝜀, 𝛿)-
DP regarding the dataset 𝐷 .

4 Approach
This section outlines our PGE approach, discussing three key as-

pects. Firstly, we introduce how to fit a data distribution with an

EBM privately and how to train a releasable network in practice.

Secondly, we describe how to sample to obtain privacy-preserving

images. Lastly, we theoretically prove that our PGE can guarantee

privacy and convergence.
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4.1 Private Gradient Estimation
Physically speaking, we assume that the energy of the private data

system is 𝑇 (𝒙, 𝒄) = 𝑈 (𝒙) + 𝐾 (𝒄), where 𝒙 represents the position

and 𝒄 represents the velocity. So there is:

𝑝 (𝒙, 𝒄) ∝ exp (−𝑇 (𝒙, 𝒄))
= exp(−𝑈 (𝒙)) exp(−𝐾 (𝒄))
∝ 𝑝 (𝒙)𝑝 (𝒄),

(2)

where 𝑝 (𝒙) and 𝑝 (𝒄) are canonical distributions of position 𝒙 and

velocity 𝒄 , and both are independently distributed. We find that

the joint distribution can be sampled using the distributions of the

random variables 𝒙 and 𝒄 . To simplify the calculation, we assume

that the distribution of the velocity 𝒄 is known and that the kinetic

energy has:

𝐾 (𝒄) = − log 𝑝 (𝒄) ∝ 𝒄𝑇 𝒄

2

. (3)

Similarly, the potential energy function can be expressed as𝑈 (𝒙) =
− log 𝑝 (𝒙).
Manifold estimation with an EBM. We use an EBM 𝐸 (𝜃 ; 𝒙) =
exp(𝐻 (𝜃 ; 𝒙))/𝑍𝜃 to estimate the canonical distribution of energy

function 𝑝 (𝒙). As mentioned in the preliminaries section, we only

need to estimate the gradient of logarithmic data density ∇ log 𝑝 (𝒙),
so we build the loss function with Fisher divergence as follows:

D𝐹 (𝑝 (𝒙)∥𝐸 (𝜃 ; 𝒙))

= E𝒙∼𝑝 (𝒙 )

[
1

2

∥∇ log𝑝 (𝒙) − ∇ log𝐸 (𝜃 ; 𝒙)∥2
]

= E𝒙∼𝑝 (𝒙 )

[
1

2

∥∇𝑈 (𝒙) − ∇𝐻 (𝜃 ; 𝒙)∥2
]
.

(4)

During the backpropagation process, it is necessary to compute

the Hessian matrices of both 𝑝 (𝒙) and 𝐸 (𝜃 ; 𝒙). However, due to the
high dimensionality of these matrices, the computational require-

ments are significant. To address this issue, we adopt the random

projection approach proposed in [45] to reduce the dimensionality.

First, we sample a projection vector 𝒗 from a standard Gaussian

distribution. Then, we project the gradients of 𝑈 (𝒙) and 𝐻 (𝜃 ; 𝒙)
onto the direction of the projection vector 𝒗. Finally, compute the

loss function as follows:

L (𝜃 ; 𝒙, 𝒗) = E𝒙∼𝑝 (𝒙 )

[
1

2

𝒗⊤∇𝑈 (𝒙) − 𝒗⊤∇𝐻 (𝜃 ; 𝒙)2] . (5)

Residual enhancement. In practice, we train a network𝑞𝜃 instead

of ∇𝐻 (𝜃 ; 𝒙) in Eq. (5) to fit ∇𝑈 (𝒙) directly. Our approach can be un-

derstood as a process of reconstructing the image information, and

inspired by masked autoencoder [26], we add a residual enhance-

ment module, as shown in Fig. 2, to improve the reconstruction

ability of the model. Specifically, for a batch of data {𝒙𝑖 }𝑏𝑖=1, we
enter them into the model 𝑞𝜃 to predict the data manifold. In addi-

tion, the data is encoded by a pre-trained VQGAN, and the masked

version is incorporated into the features extracted by the middle

layer of the model 𝑞𝜃 . This residual enhancement module improves

the reconstruction ability of the model [26]. In the sampling process,

as shown in Fig. 3, we add noise vectors sampled from a Gaussian

distribution to the features instead of masked features encoded by

the VQGAN. Adding noise vectors improves the robustness of the

model compared to adding nothing, especially when the data are

located in low-density regions [47].

Projection perturbation. Training the network 𝑞𝜃 with the gra-

dient of logarithmic data density ∇ log 𝑝 (𝒙) directly may introduce

privacy risks. To address this concern, we perform RR to prevent

leakage of private information. It perturbs the training data so that

the trained network does not reveal the true distribution of private

data during the sampling process. Therefore, we can release the

trained network without concern about compromising privacy, as

it is difficult for adversaries to tell whether an image is in the train-

ing data. Specifically, we aim to privatize the gradient of potential

energy function ∇ log 𝑝 (𝒙) in Eq. (4), which is also equivalent to

privatizing 𝒗⊤∇𝑈 (𝒙) in Eq. (5). For a batch of data 𝒙 = {𝒙𝑖 }𝑏𝑖=1
and its projection vector 𝒗 = {𝒗𝑖 }𝑏𝑖=1, there is an inherent corre-

spondence between them, so the projection vectors 𝒗𝑖 of ∇𝐻 (𝜃 ; 𝒙𝑖 )
and ∇𝑃 (𝒙𝑖 ) are the same without any protection. In our case, we

apply a RR mechanism R(·) to perturb the projection vector of

∇𝑈 (𝒙𝑖 ), which protects the private information by making the pro-

jection vectors of ∇𝑈 (𝒙) and ∇𝐻 (𝜃 ; 𝒙) not strictly aligned. This

perturbation privatizes 𝒗⊤∇𝑝 (𝒙), which indirectly randomizes true

directions toward perceptually realistic images. The RR mechanism

R(·) can be formulated as follows:

Pr [R (𝒗𝑖 ) = 𝒗𝑜 ] =


𝑒𝜀

𝑒𝜀 + 𝑘 − 1 , 𝒗𝑜 = 𝒗𝑖

1

𝑒𝜀 + 𝑘 − 1 , 𝒗𝑜 = 𝒗′
𝑖
∈ 𝒗−\{𝒗𝑖 }

, (6)

where 𝒗− is a subset of 𝒗, 𝑘 = |𝒗− | and 𝑘 ≥ 2. We choose the first 𝑘

projection vectors with the smallest cosine distance from 𝒗𝑖 to 𝒗 to

reduce the impact of RR without compromising privacy. Compared

to most other approaches with a small failure probability 𝛿 , R(·)
achieves pure DP with a failure probability of 0. By this point, the

loss function can be expressed as follows:

L (𝜃 ; 𝒙, 𝒗,R(·))

= E𝒙∼𝑝 (𝒙 )

[
1

2

R(𝒗⊤)∇𝑈 (𝒙) − 𝒗⊤∇𝐻 (𝜃 ; 𝒙)2] . (7)

Although we privatize ∇ log𝑝 (𝒙), but we cannot obtain ∇𝑈 (𝒙)
in Eq. (7) directly. Usually, we do not know the exact form of the

given data distribution. To address that, we assume that as train-

ing proceeds, 𝑞𝜃 (𝒙) converges to ∇𝑈 (𝒙) and both satisfy some

weak regularization conditions as mentioned in [30]. So combined

with [45], our loss function can be formulated as follows:

L (𝜃 ; 𝒙, 𝒗,R(·))

= E𝒙∼𝑝 (𝒙 )

[
R(𝒗⊤)∇𝑞𝜃 (𝒙)R(𝒗) +

1

2

(
𝒗⊤𝑞𝜃 (𝒙)

)
2

]
.

(8)

In this way, we can estimate the manifold of private data 𝑝 (𝒙) with
an EBM 𝐸 (𝜃 ; 𝒙). In addition to this, we train the model with the per-

turbed data manifold estimation to ensure that the model conforms

to DP. Overall, PGE can be formally proved 𝜀-DP in Theorem 1.

Detailed analysis can be found in supplementary material.

Theorem 1. Our PGE satisfies 𝜀-DP.
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Figure 3: Overview of the sampling process. Given a well-
trained network, it can predict the gradients required by
Hamiltonian dynamics. After several rounds of sampling,
the samples gradually converge from a noisy distribution to
the distribution of private data.

4.2 Sampling with Hamiltonian Dynamics
After the training process is completed, we perform MCMC sam-

pling with the leapfrog approach of Hamiltonian dynamics to gen-

erate images, as shown in Fig. 3. Following the previous section,

for the distribution of private data 𝑝 (𝒙), we have,
𝑝 (𝒙, 𝒄) = 𝑝 (𝒙) · 𝑝 (𝒄) ∝ exp(−𝐻 (𝜃 ; 𝒙)) · exp(−𝐾 (𝒄)). (9)

And the sampling process could be described as follows:

𝒄 (𝑡 + 𝜆
2

) = 𝒄 (𝑡) − 𝜆
2

∇𝒙 log𝑝 (𝒙 (𝑡), 𝒄 (𝑡));

𝒙 (𝑡 + 𝜆) = 𝒙 (𝑡) + 𝜆∇𝒄 log𝑝 (𝒙 (𝑡), 𝒄 (𝑡 +
𝜆

2

));

𝒄 (𝑡 + 𝜆) = 𝒄 (𝑡 + 𝜆
2

) − 𝜆
2

∇𝒙 log𝑝 (𝒙 (𝑡 + 𝜆), 𝒄 (𝑡 + 𝜆
2

)),

(10)

where 𝜆 is the step size. According to Eq. (9), we know−∇𝒙 log𝑝 (𝒙, 𝒄) =
∇𝒙𝐻 (𝜃 ; 𝒙) = 𝑞𝜃 (𝒙) which is the output of the trained network

and −∇𝒄 log 𝑝 (𝒙, 𝒄) = ∇𝒄𝐾 (𝒄). According to Eq. (3), we know

∇𝒄𝐾 (𝒄) = 𝛼 · 𝒄 . 𝛼 is the scale factor, which could be combined

into the step size 𝜆, so we consider ∇𝒄𝐾 (𝒄) = 𝒄 . After simplifica-

tion the sampling process is as follows:

𝒄 (𝑡 + 𝜆
2

) = 𝒄 (𝑡) + 𝜆
2

𝑞𝜃 (𝒙 (𝑡));

𝒙 (𝑡 + 𝜆) = 𝒙 (𝑡) − 𝜆𝒄 (𝑡 + 𝜆
2

);

𝒄 (𝑡 + 𝜆) = 𝒄 (𝑡 + 𝜆
2

) + 𝜆
2

𝑞𝜃 (𝒙 (𝑡 + 𝜆)),

(11)

In this way, the distribution of 𝒙 (𝑇 ) will converge infinitely to

𝑝 (𝒙) when 𝑇 →∞, in which case 𝒙 (𝑇 ) could be considered an ex-

act sample from 𝑝 (𝒙) under some regularity conditions [53]. More-

over, subsequent to executing the described sampling procedure

for a predefined number of iterations (𝑁 ), the Metropolis Criteria

are employed to adjudicate the acceptance of the image’s most re-

cent state. This decision is governed by the acceptance probability,

expressed as min (1, 𝑞𝜃 (𝒙 (𝑡 + 𝑁𝜆))/𝑞𝜃 (𝒙 (𝑡))). Such a mechanism

ensures a thorough exploration of the entire distribution of pri-

vate data, denoted as 𝑝 (𝒙), thereby facilitating the generation of

images with enhanced realism. Inspired by the learning rate ad-

justment technique in machine learning, we adopt the strategy of

step size decay to speed up the sampling process. Initially, a larger

step size is utilized to expedite the movement towards realistic

images. Subsequently, a smaller step size is employed to refine the

image details. As an added benefit, because the starting step size is

larger, it somewhat also prevents the model from collapsing into

certain data-dense regions. Notably, during the sampling process,

we no longer use VQGAN to encode the model’s input but instead

sample directly from a Gaussian distribution to add to the features

extracted by the model. On one hand, it speeds up the sampling

process compared to using VQGAN encoding, and on the other, it

improves the robustness of the model, especially in increasing the

diversity of generated data.

4.3 Convergence Analysis
In our convergence analysis, we primarily focus on the model pa-

rameters. The foundation of our analysis largely draws upon the

methodologies outlined in [3]. We consider a worst-case scenario

where the output and input of the RR mechanism differ, resulting

in opposite directions of the gradients. Under this condition, apply-

ing algorithm R(·) to the projection vectors effectively becomes

equivalent to its application on the gradient. To better express

its properties, we rewrite 𝑞𝜃 (·) as 𝑞(𝜃 ; ·). Adhering to the same

five assumptions in [3], we posit (1) | |∇𝑞(𝜃 ; ·) − ∇𝑞(𝜃 ′; ·) | |2 ≤
𝜅 | |𝜃 − 𝜃 ′ | |2; (2) 𝑞(𝜃 ; ·) ≥ 𝑞(𝜃 ′; ·) + ∇𝑞(𝜃 ′; ·)𝑇 (𝜃 − 𝜃 ′) + 1

2
𝑐 | |𝜃 −

𝜃 ′ | |2
2
; (3) ∇𝑞(𝜃 ; ·)𝑇E𝑥 [𝑔(𝜃 ; 𝒙)] ≥ 𝜇 | |∇𝑞(𝜃 ; ·) | |2

2
; (4) | |E𝒙 [𝑔(𝜃 ; 𝒙)] | |2 ≤

𝜇𝐺 | |∇𝑞(𝜃 ; ·) | |2; (5) V𝒙 [𝑔(𝜃 ; 𝒙)] ≤ 𝐶 + 𝜇𝑉 | |∇𝑞(𝜃 ; ·) | |22, where 𝜃 and

𝜃 ′ are the weights of model 𝑞, ∇𝑞(𝜃 ; ·) is the optimal gradient the-

oretically, 𝑔(𝜃, 𝒙) is the gradient we computed, E[·] is the symbol

for mean calculation, V[·] is the symbol for variance calculation

and 𝜅, 𝑐, 𝜇, 𝜇𝐺 , 𝜇𝑉 ,𝐶 are non-negative constants. Based on these

assumptions, we arrive at the following conclusions,

E[𝑞(𝜃𝑘+1; ·) − 𝑞(𝜃∗; ·)] +
𝛾2𝜅𝐶

4𝜏𝑐

≤ (2𝜏𝑐 + 1) (E[𝑞(𝜃𝑘 ; ·) − 𝑞(𝜃∗; ·)] +
𝛾2𝜅𝐶

4𝜏𝑐
),

(12)

where 𝜏 = −𝛾 ( 2𝑒𝜀

𝑒𝜀+𝑘−1 − 1)𝜇 +
1

2
𝛾2𝜅 (𝜇2

𝐺
+ 𝜇𝑉 ). When we guarantee

that 𝜏 < 0, it will converge and the error from the minimum 𝑞(𝜃∗; ·)
is −𝛾

2𝜅𝐶
4𝜏𝑐 . More details can be found in supplementary material.

5 Experiments
To verify the effectiveness of our proposed PGE, we compare it

with 11 state-of-the-art approaches and evaluate the data utility and

visual quality on four image datasets. To ensure fair comparisons,

our experiments adopt the same settings as these baselines and cite

results from their original papers.

5.1 Experimental Setup
Datasets. We conduct experiments on four image datasets, includ-

ing MNIST [32], FashionMNIST (FMNIST) [54], CelebA [37] and

LSUN [59]. We use the official preprocessed version with the face

alignment and resize the images in CelebA to 64×64 and 256×256.
CelebA-H and CelebA-G are created based on CelebA with hair

color (black/blonde/brown) and gender as the label. For LSUN, we

choose the bedroom category and resize the images to 256×256 to
evaluate the perceptual scores.

Baselines.We compare our PGEwith 14 state-of-the-art approaches,

including 7DPSGD-based approaches (DP-GAN [56], DP-MERF [25],
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Table 1: Classification accuracy comparisons with 14 state-of-the-art baselines under different privacy budget 𝜀.

MNIST FMNIST CelebA-H CelebA-G
𝜀=1 𝜀=10 𝜀=1 𝜀=10 𝜀=1 𝜀=10 𝜀=1 𝜀=10

Without pre-training
DP-GAN (arXiv’18) 0.4036 0.8011 0.1053 0.6098 0.5330 0.5211 0.3447 0.3920

PATE-GAN (ICLR’19) 0.4168 0.6667 0.4222 0.6218 0.6068 0.6535 0.3789 0.3900

GS-WGAN (NeurIPS’20) 0.1432 0.8075 0.1661 0.6579 0.5901 0.6136 0.4203 0.5225

DP-MERF (AISTATS’21) 0.6367 0.6738 0.5862 0.6162 0.5936 0.6082 0.4413 0.4489

P3GM (ICDE’21) 0.7369 0.7981 0.7223 0.7480 0.5673 0.5884 0.4532 0.4858

G-PATE (NeurIPS’21) 0.5810 0.8092 0.5567 0.6934 0.6702 0.6897 0.4985 0.6217

DataLens (CCS’21) 0.7123 0.8066 0.6478 0.7061 0.7058 0.7287 0.6061 0.6224

DPGEN (CVPR’22) 0.9046 0.9357 0.8283 0.8784 0.6999 0.8835 0.6614 0.8147

DPSH (NeurIPS’21) N/A 0.8320 N/A 0.7110 N/A N/A N/A N/A

PSG (NeurIPS’22) 0.8090 0.9560 0.7020 0.7770 N/A N/A N/A N/A

DPAC (CVPR’23) N/A 0.8800 N/A 0.7300 N/A N/A N/A N/A

With pre-training
DP-DM (TMLR’23) 0.9520 0.9810 0.7940 0.8620 0.7108 0.8586 0.7513 0.8018

DPGU (arXiv’23) N/A 0.9860 N/A N/A N/A N/A N/A N/A

DP-LDM (arXiv’23) 0.9590 0.9740 0.7890 0.8514 0.6572 0.8417 0.6851 0.7846

PGE (Ours) 0.9612 0.9751 0.8359 0.8934 0.7321 0.8983 0.7153 0.8401

GS-WGAN [9], P3GM [48], PSG [8], DPSH [6], DP-DM [12], DPGU [22],

DPAC [7] and DP-LDM [39]), 3 PATE-based approaches (PATE-

GAN [31], G-PATE [38] and DataLens [49]) and DPGEN [10] based

randomized response. We get the experimental results from their

original papers or run their official codes.

Implementations. We choose the same UNet as DP-DM to fit the

potential energy of the system. When comparing classifier perfor-

mance, we choose the same architecture as the other baselines. We

initialize the network and the classifier using Kaiming initialization.

If not emphasized, we set 𝑘 to 10 by default and 𝒄 to sample from a

Gaussian distribution by default. The training epoch of network is

10,000 for MNIST, FashionMNIST and 50,000 for CelebA, LSUN. For

each dataset, we generate 10,000 samples for classifier learning. The

initial value of step size 𝜆 is 10−5 and the sampling epoch is 1,000.

We perform Metropolis Guidelines to decide whether to accept

every 100 epochs of sampling.

Metrics. We evaluate our PGE as well as baselines in terms of clas-

sification accuracy and perceptual scores under the same different

privacy budget constraints. In particular, the classification accuracy

is evaluated by training a classifier with the generated data and

testing it on real test datasets. Perceptual scores are evaluated by

Inception Score (IS) and Frechet Inception Distance (FID), which

are standard metrics for the visual quality of images.

5.2 Experimental Results
Classification accuracy comparisons. In order to demonstrate

the effectiveness of our approach, we compare it with 11 state-of-

the-art baselines under two privacy budget setting 𝜀 = 1 and 𝜀 = 10

on MNIST, FMNIST, CelebA-H and CelebA-G. Both our PGE and

DPGEN satisfy pure DP, while the other baselines have a failure

probability 𝛿 = 10
−5
. We evaluate the classification accuracy of

the classifiers trained on the generated data, and the results are

summarized in Tab. 1. It is important to note that our approach does

not require pre-training with any dataset. Compared to approaches

without pre-training, we observe consistent and significant im-

provements of around 4-6% across different configurations. This

improvement is attributed to the fact that most approaches without

Table 2: Perceptual scores comparisons with 9 state-of-the-
art baselines on CelebA at 64 × 64 resolution under different
privacy budget 𝜀.

Approach 𝜀 IS↑ FID↓
Without pre-training
DP-GAN (arXiv’18) 10

4
1.00 403.94

PATE-GAN (ICLR’19) 10
4

1.00 397.62

GS-WGAN (NeurIPS’20) 10
4

1.00 384.78

DP-MERF (AISTATS’21) 10
4

1.36 327.24

P3GM (ICDE’21) 10
4

1.37 435.60

G-PATE (NeurIPS’21) 10 1.37 305.92

DataLens (CCS’21) 10 1.42 320.84

DPGEN (CVPR’22) 10 1.48 55.910

With pre-training
DP-LDM (arXiv’23) 10 N/A 14.300

PGE (Ours) 10 2.14 12.583

pre-training rely on GANs and Gaussian mechanism for differ-

entially private generative modeling. In contrast, our approach

combines a more stable EBM with RR to achieve a better balance

between privacy and data utility. Furthermore, when compared

to two DDPM-based approaches with pre-training, our approach

consistently achieves optimal results in most settings. This can

be attributed to the fact that EBMs converge with fewer queries

compared to DDPM, resulting in better performance. These re-

sults suggest that our PGE can effectively generate high-resolution

images with practical applications.

Perceptual scores comparisons. To further demonstrate the ef-

fectiveness of our approach, we evaluate it using two metrics: IS

and FID, as mentioned earlier. Since there are no corresponding

experimental results for PSG and DP-DM, we compared our ap-

proach with the remaining 9 approaches. The results are shown in

Tab. 2. Here, a superior IS value signifies enhanced quality of the

generated samples, whereas a lower FID score indicates a closer

resemblance to authentic images. Our approach outperforms the

other baseline approaches by achieving the highest IS of 2.14 and

the lowest FID of 12.583, particularly notable under the most strin-

gent privacy budget of 10. This can be attributed to twomain factors.
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Figure 4: Visualization results of DP-GAN, GS-WGAN, DP-
MERF, P3GM, DataLens, DPGEN, DP-LDM and our PGE on
CelebA at 32×32 and 64×64 resolutions.

Firstly, we achieve differential privacy by employing RR instead

of the Gaussian mechanism, which helps to avoid direct damage

to the gradients. Secondly, EBMs exhibit better stability during

the training process compared to GANs. These results emphasize

the robustness of our approach. Despite the randomized response

perturbation, the trained network can still accurately predict the

positions of the realistic images.

Visual comparisons of generated data. Furthermore, we provide

visual evidence to demonstrate the excellent quality of the gener-

ated data by our approach. We compare the visualization results

with other baselines in Fig. 4. Even under a high privacy budget

condition of 𝜀 = 10
4
, the grayscale images generated by DP-GAN,

GS-WGAN, DP-MERF, and P3GM are still blurry in comparison.

Grayscale images have lower dimensionality compared to color

images, which makes it relatively easier to balance data quality

with privacy protection. The color images generated by DPGEN

and DP-LDM exhibit better visual quality than DataLens but lack

fleshed-out facial details. In comparison, the images generated by

our PGE appear more realistic and havemore complete facial details,

further confirming the effectiveness of our approach.

Visualization for images with 256 resolution. To further eluci-

date the capacity of our PGE to generate high-resolution images,

we conduct visualizations of images at a resolution of 256, under

a setting of 𝜀 = 20. The results are presented in Fig. 5, where the

generated images serve as empirical evidence to the efficacy of

our approach. Notably, despite the augmented complexity inherent

to processing images of a 256×256 resolution, our PGE exhibits a

robust ability to accurately model the underlying data distribution.

Figure 5: Visualization results of CelebA and LSUNat 256×256
resolution under 𝜀 = 20.

Figure 6: FID score on LSUNandCelebA at 256×256 resolution
under different 𝑘 .

This is a critical observation, as it indicates the preservation of

essential visual features even at higher resolutions. Moreover, a

detailed comparison with images of lower resolutions (those less

than 256) reveals a significant enhancement in the richness of detail

within these higher-resolution images. Such improvement is not

merely cosmetic but has substantial implications for the utility of

the generated data. Specifically, the enhanced detail facilitates the

deployment of these images in more demanding downstream tasks,

where fine-grained visual information is pivotal. Thus, the results

highlight the effectiveness of our approach with respect to the need

for high-resolution image generation.

5.3 Ablation Studies
After the promising performance is achieved, we further analyze

the impact of each component of our approach, including the hy-

perparameter 𝑘 , the step size 𝜆 and the initial distribution of kinetic

energy 𝐾 (𝒄).
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Figure 7: Perceptual scores on LSUN at 256×256 resolution
under different step size 𝜆.

Impact of 𝑘 . To investigate the impact of the hyperparameter 𝑘

on the trade-off between privacy and data utility, we compare the

perceptual scores obtained when 𝑘 takes different values under

the same privacy budget 𝜀 = 10. To make the experimental results

more representative, we chose two datasets, CelebA and LSUN,

with a resolution of 256×256. The results are presented in Fig. 6.

As 𝑘 increases, the FID score increases, indicating a decrease in the

quality of the generated image. This aligns with our expectations.

According to Eq. (6), a smaller 𝑘 value increases the likelihood of

R(𝒗𝑖 ) = 𝒗𝑖 , which in turn enhances the probability that the model

accurately captures the underlying data manifold. This implies that

the generated data will resemble the distribution of private data

more closely. Therefore, as 𝑘 increases, there is a slight decline in

the quality of the generated images.

Impact of step size. To study the effect of the step size 𝜆 on the

quality of the generated images, we generate images with different

step size 𝜆 and compare their perceptual scores. The results are

shown in Fig. 7. Our findings suggest that decreasing the step size

𝜆 weakly improves the quality of the generated images when 𝜆 is

below 1𝑒 − 6. However, at 𝜆 = 1𝑒 − 7, we observe a slight decrease
in the quality of the generated images compared to 𝜆 = 1𝑒 − 6.

Similar to the learning rate in machine learning, a smaller 𝜆 leads

to finer adjustments per sample, potentially enriching image detail.

Nevertheless, excessively small 𝜆 values may cause the generation

process to converge to local optima, compromising the quality

of the resulting images. Therefore, achieving the best balance in

choosing 𝜆is critical to enhancing image detail while ensuring that

it doesn’t get in the way of other optimization workflows.

Impact of kinetic energy distribution. To explore the effect of

the initial distribution of kinetic energy𝐾 (𝒄) (or 𝒄) on the data qual-
ity. Images are sampled with different initial distribution (Gaussian,

Rayleigh, and Uniform) of 𝒄 and show the results in Fig. 8. It is

observed that the images generated with the initial value of 𝒄 sam-

pled from the Gaussian distribution exhibit the highest quality.

The Rayleigh distribution, which is the joint distribution of two

independent Gaussian distributions, yielded slightly lower-quality

images than the Gaussian distribution. The lowest image quality is

observed when the initial values of 𝒄 are sampled from Uniform dis-

tribution, but the difference in quality between the images obtained

Figure 8: Perceptual scores on LSUN at 256×256 resolution
under different kinetic energy distribution 𝐾 (𝒄).

when the initial value of 𝒄 was sampled from the three distributions

is not very large. The conservation of both kinetic and potential

energy in a system not affected by external forces is the main reason

for this. Additionally, Eq. (11) reveals that there is an interaction

between the two energies, and that the varying distributions only

impact the initial energy magnitude of the system.

6 Limitations
There are still some limitations to PGE.We summarize them here. (1)

Our use of Hamiltonian dynamics for sampling, unlike GANs that

generate images all at once, requires iterative querying, making it

significantly slower, especially for high-dimensional images—up to

a hundred times slower than GANs. (2) The generated images often

lack detailed backgrounds; for instance, CelebA images typically

have a solid color background. (3) Our approach struggles with

class information extraction compared to classifier-guided diffusion

models, as embedding labels directly into images lacks theoretical

support. Developing a class-guided sampling approach is a future

goal. (4) The model may inadvertently learn dataset biases, which

we aim to address through data preprocessing in future work.

7 Conclusion
Releasing private data or trained networks can lead to privacy leak-

age. To ensure secure deployment, we propose a PGE approach

that generates privacy-preserving images for various tasks. By inte-

grating the RR mechanism into the training of EBMs, our approach

balances privacy and utility more effectively than other state-of-

the-art approaches. Additionally, our MCMC sampling algorithm

based on Hamiltonian dynamics enhances realistic data generation.

Moreover, we conducted detailed privacy and convergence anal-

yses for our PGE. Notably, PGE satisfies pure DP, eliminating the

failure probability present in most other DP generative approachs.

Extensive experiments and privacy and convergence analysis are

conducted to show the effectiveness and rationality of our approach.
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Supplementary Material
Procedure of PGE
The procedure of our approach is shown in Alg. 1 and Alg. 2.

Alg. 1 is the training procedure of the network. It can be described

as the following four steps:

• randomly sample a batch of data : {𝒙𝑖 }𝑏𝑖=1.
• randomly sample a batch of vectors 𝒗 = {𝒗𝑖 }𝑏𝑖=1.
• form 𝒗− and compute 𝒗𝑟 = R(𝒗 |𝒗−).
• calculate the loss function with Eq. (8) and update the net-

work.

We note that the network is trained to predict the direction where

the logarithmic data density grows themost.We are more interested

in the direction of the predictions than the scale, sowe choose cosine

distance to select the top-𝑘 nearest projection vectors to form 𝒗− .
Alg. 2 is the sampling procedure of generated images. Unlike tra-

ditional Hamiltonian dynamics, we adjust the step size 𝜆 every fixed

number of epochs (line. 4 in Alg. 2). This enables faster sampling

and does not get trapped in a local optimum. Every N rounds of

sampling, we perform an acceptance-rejection strategy to improve

the fidelity and diversity of the generated images (line. 10-11 in

Alg. 2).

Algorithm 1 Private Gradient Estimation

Input: Private data 𝒙 , training iterations 𝑇 , loss function L(𝜃 ; ·),
DP mechanism R(·), randomized response parameter 𝑘 , learning

rate 𝛾

1: Initialize 𝜃0 randomly

2: for 𝑡 ∈ [𝑇 ] do
3: Sample a batch of data {𝒙𝑖 }𝑏𝑖=1 from 𝒙

4: Sample a batch of vectors {𝒗𝑖 }𝑏𝑖=1 from a Gaussian distribu-

tion

5: Calculate loss L(𝜃 ; {𝒙𝑖 }𝑏𝑖=1, {𝒗𝑖 }
𝑏
𝑖=1
,R(·))

6: Update the network 𝜃𝑡+1 ← 𝜃𝑡 + 𝛾∇L
7: end for
8: return 𝜃𝑇
9: Function R(𝒗)
10: Initialize 𝒗𝑟 to be an empty set Φ
11: for each 𝒗𝑖 in 𝒗 do
12: Select top-𝑘 nearest vectors to 𝒗𝑖 from 𝒗 to form 𝒗−

13: Append 𝒗𝑖 to 𝒗𝑟 with probability of
𝑒𝜀

𝑒𝜀+𝑘−1 and append other
elements in 𝒗− with probability of

1

𝑒𝜀+𝑘−1
14: end for
15: return 𝒗𝑟

Proof of Theorem. 1
Recall the core thought of our PGE, we perturb the projection vector

of log data density to achieve differential privacy. We aim to protect

the log data density (𝒗𝑇 )∗𝒗𝑇∇ log𝑝 (𝒙), which guides the network

learning. 𝒗∗ represents the inverse matrix of 𝒗. Given a batch of

data 𝐷 = {𝒙𝑖 }𝑏𝑖=1 and projection vector 𝒗 = {𝒗𝑖 }𝑏𝑖=1, the probability
of 𝒗∗

𝑖
𝒗𝑖∇ log 𝑝 (𝒙𝑖 ) is as follows:

𝑃𝑟 [𝒗𝑖 , 𝒙𝑖 |𝒗, 𝐷] = 𝑃𝑟 [𝒙𝑖 |𝐷] · 𝑃𝑟 [𝒗𝑖 |𝒗] · 𝑃𝑟 [𝒗− |𝒗𝑖 , 𝒗] · 𝑃𝑟 [R(𝒗𝑖 ) = 𝒗𝑟𝑖 |𝒗
−] .

(13)

After we achieve differential privacy by performing randomized

response, the probability of the resulting output 𝒗∗
𝑖
𝒗𝑟
𝑖
∇ log𝑝 (𝒙𝑖 ) =

𝒗∗
𝑖
R(𝒗𝑖 )∇ log 𝑝 (𝒙𝑖 ) is as follows:
𝑃𝑟 [𝒗𝑖 , 𝒙𝑖 , 𝒗𝑟𝑖 , 𝒗

− |𝒗, 𝐷] =
𝑃𝑟 [𝒙𝑖 |𝐷] · 𝑃𝑟 [𝒗𝑖 |𝒗] · 𝑃𝑟 [𝒗− |𝒗𝑖 , 𝒗] · 𝑃𝑟 [R(𝒗𝑖 ) = 𝒗𝑟𝑖 |𝒗

−] .
(14)

Algorithm 2 MCMC Sampling with Hamiltonian Dynamics

Input: Trained network 𝑞𝜃 (·), kinetic energy 𝐾 (·), step size 𝜆0,

private data 𝐷 , sampling iterations𝑀 , acceptance-rejection

iterations 𝑁

1: Initialize 𝒙 (0), 𝒄 (0) randomly

2: for𝑚 ∈ [𝑀] do
3: Initialize 𝑝 (𝑚) randomly

4: 𝜆 = 𝜆0 · (𝑀/𝑚)2
5: for 𝑛 ∈ [𝑁 ] do
6: 𝒄

(
𝑚 + (𝑛 + 1

2
)𝜆
)
= 𝒄 (𝑚 + 𝑛𝜆) − 𝜆

2
𝑞𝜃 (𝒙 (𝑚 + 𝑛𝜆))

7: 𝒙 (𝑚 + (𝑛 + 1)𝜆) = 𝒙 (𝑚 + 𝑛𝜆) + 𝜆∇𝒄𝐾 (𝒄
(
𝑚 + (𝑛 + 1

2
)𝜆
)
)

8: 𝒄 (𝑚+ (𝑛+1)𝜆) = 𝒄
(
𝑚 + (𝑛 + 1

2
)𝜆
)
− 𝜆

2
𝑞𝜃 (𝒙 (𝑚+ (𝑛+1)𝜆))

9: end for
10: Calculate the probability 𝑝𝑎 = min(1, 𝑞𝜃 (𝒙 (𝑚 +

𝑁𝜆))/𝑞𝜃 (𝒙 (𝑚)))
11: 𝒙 (𝑚 + 1) = 𝒙 (𝑚 + 𝑁𝜆) with probability 𝑝𝑎 and 𝒙 (𝑚 + 1) =

𝒙 (𝑚) with 1 − 𝑝𝑎
12: end for
13: return 𝒙 (𝑀)

This equation is obtained by Bayes’ theorem. In our approach,

we sample data 𝒙𝑖 and 𝒗𝑖 uniformly, so that 𝑃𝑟 [𝒙𝑖 |𝐷] and 𝑃𝑟 [𝒗𝑖 |𝒗]
are 1/𝑏. Given 𝒗 and 𝒗𝑖 , we select the top-𝑘 vectors from 𝒗 that are

similar to 𝒗𝑖 to form 𝒗− . This process is fixed, so 𝑃𝑟 [𝒗− |𝒗𝑖 , 𝒗] = 1.

Following the above analysis, we have,

𝑃𝑟 [𝒙𝑖 , 𝒗𝑖 , 𝒗𝑟𝑖 , 𝒗
− |𝒗, 𝐷] = 𝑃𝑟 [R(𝒗𝑖 ) = 𝒗𝑟𝑖 |𝒗

−] · 1/𝑏2 . (15)

Given a image 𝒙𝑖 and its projection vector 𝒗𝑖 , we defineM(𝒗𝑖 , 𝒖𝑖 ) =
R(𝒗𝑖 ) · H (𝒖𝑖 ) = 𝒗𝑟

𝑖
· ∇ log𝑝 (𝒙𝑖 ). In our case, we assume that R

and H are independent of each other, so 𝑃𝑟 [M(·)] = 𝑃𝑟 [R(·)] ·
𝑃𝑟 [H (·)].

Lemma 1. For any two different training data 𝒙𝑖 , 𝒙 𝑗 and their
projection vectors 𝒗𝑖 , 𝒗 𝑗 , the mechanismM satisfies

𝑃𝑟 [M (𝒗𝑖 , 𝒙𝑖 ) ∈ 𝑂] ≤ 𝑒𝜀 · 𝑃𝑟
[
M

(
𝒗 𝑗 , 𝒙 𝑗

)
∈ 𝑂

]
, (16)

where 𝑂 is a possible output ofM.

Proof. From the definition of randomized response mechanism,
we can know the probability that R(·) takes as input 𝒗𝑖 and returns
𝒗𝑖 is the largest for 𝑒𝜀/(𝑒𝜀 + 𝑘 − 1) and that takes as input 𝒗 𝑗 and
returns 𝒗𝑖 is the smallest for 1/(𝑒𝜀 + 𝑘 − 1). We sample 𝒙𝑖 uniformly,
so 𝑃𝑟 [H (𝒙𝑖 )] = 𝑃𝑟 [H (𝒙 𝑗 )]. Then we have

𝑃𝑟 [M (𝒗𝑖 , 𝒙𝑖 ) ∈ 𝑂] = 𝑃𝑟 [R(𝒗𝑖 ) = 𝒗𝑜 ] · 𝑃𝑟 [H (𝒙𝑖 )]
≤ 𝑒𝜀 · 𝑃𝑟

[
R(𝒗 𝑗 ) = 𝒗𝑜

]
· 𝑃𝑟 [H (𝒙𝑖 )]

= 𝑒𝜀 · 𝑃𝑟
[
R(𝒗 𝑗 ) = 𝒗𝑜

]
· 𝑃𝑟 [H (𝒙 𝑗 )]

= 𝑒𝜀 · 𝑃𝑟
[
M

(
𝒗 𝑗 , 𝒙 𝑗

)
∈ 𝑂

] (17)

□



Private Gradient Estimation is Useful for Generative Modeling MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Lemma 2. The mechanismM satisfies 𝜀-DP.

Proof. Consider two adjacent datasets𝐷 = {𝒙𝑖 }𝑏𝑖=1, 𝐷
′ = {𝒙′

𝑖
}𝑏
𝑖=1

that differ only by one data and their projection vectors 𝒗 = {𝒗𝑖 }𝑏𝑖=1, 𝒗
′ =

{𝒗′
𝑖
}𝑏
𝑖=1

. The data are independent of each other so we have

𝑃𝑟 [M(𝒗, 𝐷) ∈ 𝑂]
= 𝑃𝑟

[
M

(
𝒗 ∩ 𝒗′, 𝐷 ∩ 𝐷′

)
∈ 𝑂

]
· 𝑃𝑟 [M (𝒗𝑖 , 𝒙𝑖 ) ∈ 𝑂]

≤ 𝑒𝜀 · 𝑃𝑟
[
M

(
𝒗 ∩ 𝒗′, 𝐷 ∩ 𝐷′

)
∈ 𝑂

]
· 𝑃𝑟

[
M

(
𝒗′𝑖 , 𝒙

′
𝑖

)
∈ 𝑂

]
= 𝑒𝜀 · 𝑃𝑟 [M(𝒗′, 𝐷′) ∈ 𝑂],

(18)

where 𝑂 is a set of possible outputs. From line 2 to line 3 is based on
Lemma. 1. □

Our approach trains the network with datasets 𝐷 and projection

vectors 𝒗. It is necessary to calculate the joint probability to clarify

the association of each vector. Next, we prove that our PGE satisfies

differential privacy based on Lemma. 2.

Theorem 1. Our PGE satisfies 𝜀-DP.

Proof. Consider two adjacent datasets 𝐷 = {𝒙𝑖 }𝑏𝑖=1 and 𝐷′ =
{𝒙′

𝑖
}𝑏
𝑖=1

and their projection vectors 𝒗 = {𝒗𝑖 }𝑏𝑖=1, 𝒗
′ = {𝒗′

𝑖
}𝑏
𝑖=1

. We
define F (𝒗𝑖 , 𝒙𝑖 ) = 𝒗∗

𝑖
R(𝒗𝑖 )∇ log 𝑝 (𝒙𝑖 ), then according to Eq. (2) and

Eq. (3), we have

𝑃𝑟 [F (𝒗, 𝐷) ∈ O] =
∏
𝑖

𝑃𝑟 [𝒗𝑖 , 𝒙𝑖 , 𝒗𝑟𝑖 , 𝒗
− |𝒗, 𝐷]

=
∏
𝑖

𝑃𝑟 [R(𝒗𝑖 ) = 𝒗𝑟𝑖 |𝒗
−] · 1/𝑏2

=
∏
𝑖

𝑃𝑟 [R(𝒗𝑖 ) · H (𝒙𝑖 ) ∈ 𝑂 |𝒗−] · 1/𝑏2

= 𝑃𝑟 [M(𝒗, 𝐷) ∈ 𝑂] · 1/𝑏2

≤ 𝑒𝜀 · 𝑃𝑟 [M(𝒗′, 𝐷′) ∈ 𝑂] · 1/𝑏2

= 𝑒𝜀 · 𝑃𝑟 [F (𝒗′,D′) ∈ O],

(19)

where O is the range of output of F , from line 4 to line 5 is based on
Lemma. 2 and from line 5 to line 6 is the inverse derivation of line 1 to
line 4. We note that as long as F (𝒗, 𝐷) satisfies differential privacy,
the trained probabilistic model and the images generated with it also
satisfy differential privacy according to the post-processing property
of differential privacy. So our PGE satisfies 𝜀-DP. □

Covergence Analysis
We begin by stating that most of our analysis process is based

on [Bottou et al., 2018]. We consider the worst-case scenario: the

gradient of the randomized response algorithm when the outputs

and inputs are different is exactly the opposite of the gradient when

they are the same. In this case, the R(·) algorithm performing on

the label is equivalent to performing on the gradient. To make the

analysis easier and more understandable, we rewrite 𝑞𝜃 (·) as 𝑞(𝜃 ; ·)
and follow five standard assumptions same as [Bottou et al., 2018],

(1) | |∇𝑞(𝜃 ; ·) − ∇𝑞(𝜃 ′; ·) | |2 ≤ 𝜅 | |𝜃 − 𝜃 ′ | |2;

(2) 𝑞(𝜃 ; ·) ≥ 𝑞(𝜃 ′; ·) + ∇𝑞(𝜃 ′; ·)𝑇 (𝜃 − 𝜃 ′) + 1

2

𝑐 | |𝜃 − 𝜃 ′ | |2
2

(3) ∇𝑞(𝜃 ; ·)𝑇E𝑥 [𝑔(𝜃 ; 𝒙)] ≥ 𝜇 | |∇𝑞(𝜃 ; ·) | |22;
(4) | |E𝒙 [𝑔(𝜃 ; ·)] | |2 ≤ 𝜇𝐺 | |∇𝑞(𝜃 ; ·) | |2;
(5) V𝒙 [𝑔(𝜃 ; ·)] ≤ 𝐶 + 𝜇𝑉 | |∇𝑞(𝜃 ; ·) | |22,

(20)

where 𝜃 and 𝜃 ′ are the weights of model 𝑞, ∇𝑞(𝜃 ; ·) is the true

gradient, 𝑔(𝜃, ·) is the gradient we computed, E[·] is the symbol for

mean calculation, V[·] is the symbol for variance calculation and

𝜅, 𝑐, 𝜇, 𝜇𝐺 , 𝜇𝑉 ,𝐶 are non-negative constants.

Lemma 3. For any two weights 𝜃 and 𝜃 ′, the difference of the
objective function 𝑞(𝜃 ) − 𝑞(𝜃 ′) is limited by the distance between the
weights.

𝑞(𝜃 ; ·) ≤ 𝑞(𝜃 ′; ·) + ∇𝑞(𝜃 ′; ·)𝑇 (𝜃 − 𝜃 ′) + 1

2

𝜅 | |𝜃 − 𝜃 ′ | |2
2
. (21)

Proof. Consider any path 𝑠 from 𝜃 ′ to 𝜃 , we have

𝑞(𝜃 ; ·) − 𝑞(𝜃 ′; ·)

=

∫
𝑠

∇𝑞(𝑥 ; ·)𝑇𝑑𝑥

=

∫
1

0

𝜕𝑞(𝑠 (𝑡); ·)
𝜕𝑡

𝑑𝑡

=

∫ 𝜃

𝜃 ′
∇𝑞(𝑠 (𝑡); ·)𝑑𝑠 (𝑡)

=

∫ 𝜃

𝜃 ′
∇𝑞(𝜃 ′; ·)𝑑𝑠 (𝑡) +

∫ 𝜃

𝜃 ′
[∇𝑞(𝑠 (𝑡); ·) − ∇𝑞(𝜃 ′; ·)]𝑑𝑠 (𝑡)

≤
∫ 𝜃

𝜃 ′
∇𝑞(𝜃 ′; ·)𝑑𝑠 (𝑡) +

∫ 𝜃

𝜃 ′
𝜅 | |𝑠 (𝑡) − 𝜃 ′ | |2𝑑𝑠 (𝑡)

= ∇𝑞(𝜃 ′; ·)𝑇 (𝜃 − 𝜃 ′) + 1

2

𝜅 | |𝜃 − 𝜃 ′ | |2
2
.

(22)

□

The inequality is based on assumption (1).

Lemma 4. For any weight 𝜃 , the distance between 𝑞(𝜃 ; ·) and the
minimum value 𝑞(𝜃∗; ·) is limited by ∇𝑞(𝜃 ; ·) as follows

𝑞(𝜃 ; ·) − 𝑞(𝜃∗; ·) ≤ 1

2𝑐
| |∇𝑞(𝜃 ; ·) | |2

2
. (23)

Proof. According to assumption (2), we can regard the right

side of the inequality as a quadratic function on 𝜃 . When 𝜃 =

𝜃 ′− 1

𝑐 ∇𝑞(𝜃
′
; ·), it takes the minimum value𝑞(𝜃 ′; ·)− 1

2𝑐 | |∇𝑞(𝜃
′
; ·) | |2

2
.

Substituting it into assumption (2) and letting 𝜃 = 𝜃∗, we can get

Lemma 4. □

According to the assumptions before (We consider the worst-

case scenario: the gradient of the randomized response algorithm

when the outputs and inputs are different is exactly the opposite of

the gradient when they are the same.), we consider the update at

step 𝑘 as

𝜃𝑘+1 = 𝜃𝑘 − 𝛾 · R(𝑔(𝜃𝑘 , ·)), (24)

whereR(𝑔(𝜃𝑘 , ·)) will return𝑔(𝜃𝑘 , ·) with the probability of 𝑒𝜀/(𝑒𝜀+
𝑘 −1) and return −𝑔(𝜃𝑘 , ·) with the probability of 1−𝑒𝜀/(𝑒𝜀 +𝑘 −1).

Based on Lemma 3, we have

𝑞(𝜃𝑘+1; ·) ≤ 𝑞(𝜃𝑘 ; ·)−𝛾∇𝑞(𝜃𝑘 ; ·)𝑇R(𝑔(𝜃𝑘 , ·)) +
1

2

𝜅𝛾2 | |R(𝑔(𝜃𝑘 , ·)) | |22︸            ︷︷            ︸
| |𝑔 (𝜃𝑘 ,· ) | |22

.

(25)
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Table 3: Classification accuracy comparisons on image
datasets under small privacy budget 𝜀.

MNIST FMNIST
𝜀 0.2 0.6 0.8 0.2 0.6 0.8

DataLens 0.2344 0.4201 0.6485 0.2226 0.3863 0.5534

PGE 0.4702 0.7462 0.9211 0.4582 0.6954 0.8002

Table 4: Classification accuracy and entropy comparisons on
image datasets under small privacy budget 𝜀.

Acc./Entropy MNIST FMNIST

With Res. 0.9751/3.21 0.8934/3.23
Without Res. 0.9543/3.14 0.8761/3.11

Taking the expectations on both sides gives

E[𝑞(𝜃𝑘+1; ·) − 𝑞(𝜃𝑘 ; ·)] ≤ −𝛾∇𝑞(𝜃𝑘 ; ·)𝑇E[R(𝑔(𝜃𝑘 , ·))]

+ 1

2

𝛾2𝜅 E[| |𝑔(𝜃𝑘 , ·) | |22]︸            ︷︷            ︸
| |E[𝑔 (𝜃𝑘 ,· ) ] | |22+V[𝑔 (𝜃𝑘 ,· ) ]

. (26)

According to our pre-assumed scenario,

E[R(𝑔(𝜃𝑘 , ·))] =
𝑒𝜀

𝑒𝜀 + 𝑘 − 1𝑔(𝜃𝑘 , ·)

+ (1 − 𝑒𝜀

𝑒𝜀 + 𝑘 − 1 )𝑔(𝜃𝑘 , ·)

= ( 2𝑒𝜀

𝑒𝜀 + 𝑘 − 1 − 1)︸              ︷︷              ︸
𝜁

𝑔(𝜃𝑘 , ·) .
(27)

Combined with assumptions (3), (4) and (5), we can get

E[𝑞(𝜃𝑘+1; ·) − 𝑞(𝜃𝑘 ; ·)]

≤ −𝛾𝜁∇𝑞(𝜃𝑘 ; ·)𝑇E[𝑔(𝜃𝑘 , ·)] +
1

2

𝛾2𝜅 ( | |E[𝑔(𝜃𝑘 , ·)] | |22 + V[𝑔(𝜃𝑘 , ·)])

≤ −𝛾𝜁 𝜇 | |∇𝑞(𝜃 ; ·) | |2
2
+ 1

2

𝛾2𝜅 (𝐶 + (𝜇2𝐺 + 𝜇𝑉 ) | |𝑞(𝜃𝑘 ; ·) | |
2

2
)

= (−𝛾𝜁 𝜇 + 1

2

𝛾2𝜅 (𝜇2𝐺 + 𝜇𝑉 ))︸                           ︷︷                           ︸
𝜏

| |𝑞(𝜃𝑘 ; ·) | |22 +
1

2

𝛾2𝜅𝐶.

(28)

If the algorithm converges, it takes −𝛾𝜇 + 1

2
𝛾2𝜅 (𝜇2

𝐺
+ 𝜇𝑉 ) < 0.

According to Lemma 4, we can further get

E[𝑞(𝜃𝑘+1; ·) − 𝑞(𝜃∗; ·)] − E[𝑞(𝜃𝑘 ; ·) − 𝑞(𝜃∗; ·)]

≤ 𝜏 | |𝑞(𝜃𝑘 ; ·) | |22 +
1

2

𝛾2𝜅𝐶

≤ 2𝜏𝑐E[𝑞(𝜃𝑘 ; ·) − 𝑞(𝜃∗; ·)] +
1

2

𝛾2𝜅𝐶.

(29)

Eq. 29 is transformed to obtain

E[𝑞(𝜃𝑘+1; ·) − 𝑞(𝜃∗; ·)] +
𝛾2𝜅𝐶

4𝜏𝑐

≤ (2𝜏𝑐 + 1) (E[𝑞(𝜃𝑘 ; ·) − 𝑞(𝜃∗; ·)] +
𝛾2𝜅𝐶

4𝜏𝑐
)

(30)

We know 𝜏 < 0, so 2𝜏𝑐 + 1 < 1. The algorithm converges when

we guarantee that 𝜏 < 0. The error from the minimum 𝑞(𝜃∗; ·) is
−𝛾

2𝜅𝐶
4𝜏𝑐 .

Experimental Results under Small 𝜀
We conduct experiments under small 𝜀 to verify the effectiveness of

our method here. The results are shown in Tab. 3. We can find that

even under the condition of small 𝜀, ourmethod still has outstanding

performance.

Discussion of Residual Structure
We use a residual structure in our framework. Here, we conduct

experiments on two datasets (MNIST and FMNIST) to explore the

role of this structure. The results are shown in Tab. 4.We capture the

diversity of the generated samples through the metric of entropy.

We find that having this structure improves the diversity and data

utility of the generated samples.

Extended Visualization Results
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Figure 9: Visualization results of MNIST and FashionMNIST with 28×28 resolution under different privacy budget.
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Figure 10: Visualization results of CelebA with 64×64 resolution under different privacy budget.
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