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Abstract—Deep learning models can achieve high inference ac-
curacy by extracting rich knowledge from massive well-annotated
data, but may pose the risk of data privacy leakage in practical
deployment. In this paper, we present an effective teacher-student
learning approach to train privacy-preserving deep learning
models via differentially private data-free distillation. The main
idea is generating synthetic data to learn a student that can
mimic the ability of a teacher well-trained on private data. In the
approach, a generator is first pretrained in a data-free manner
by incorporating the teacher as a fixed discriminator. With the
generator, massive synthetic data can be generated for model
training without exposing data privacy. Then, the synthetic data
is fed into the teacher to generate private labels. Towards this end,
we propose a label differential privacy algorithm termed selective
randomized response to protect the label information. Finally, a
student is trained on the synthetic data with the supervision of
private labels. In this way, both data privacy and label privacy
are well protected in a unified framework, leading to privacy-
preserving models. Extensive experiments and analysis clearly
demonstrate the effectiveness of our approach.

Index Terms—differential privacy, teacher-student learning,
knowledge distillation

I. INTRODUCTION

Deep learning models have proven success in many infer-
ence tasks [1]–[5] by extracting rich knowledge from massive
well-annotated data. However, the deployment of these well-
performing models may has risk of data privacy leakage since
the training data often contain private information [6] and the
models may be attacked. For example, the existing works [7],
[8] have shown that the private information in the training data
can be obtained from models even if the parameters are not
known. Thus, it is important to devise effective solutions that
can learn privacy-preserving models with less accuracy loss.

Differential privacy [9] is widely used in privacy protection
and provides privacy measurement standard for data and label.
Abadi et al. [10] first introduced differential privacy into
stochastic gradient descent to train deep learning models, and
their proposed DPSGD algorithm achieves good differential
privacy but leads to large accuracy degradation. Papernot et
al. [6] proposed private aggregation of teacher ensembles
(PATE) that achieves differential privacy by limiting privacy
loss with the number of labels. For only label-sensitive setting,
Chaudhuri et al. [17] proposed the concept of label differential
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privacy (LabelDP). Badih et al. [11] then introduced prior
probabilities into the randomized response and trained privacy-
preserving models in a multi-step manner. Malek et al. [12]
applied PATE and bayesian inference to the label differential
privacy setting. Correspondingly, Yuan et al. [13] applied [10]
to the label differential privacy setting. Esfandiari et al. [14]
improved the model performance by adding a clustering op-
eration before the randomized response. We found that it is
much easier to perform the differential privacy algorithm on
only the labels than on the data at the same time, and the
model accuracy will be much higher through the above works.
However, a major issue is how to convert differential privacy
setting into label differential privacy setting.

To convert differential privacy setting into label differential
privacy setting, a key is learning models with generative data
and private labels. Recent data-free knowledge distillation can
provide this function. Data-free knowledge distillation is a
class of approaches which aims to train a student model with
a pre-trained teacher model without access to original training
data. It uses the information extracted from the teacher model
to synthesize data used in the distillation process. Chen et
al. [15] proposed data-free learning for training the student
model by exploiting GAN. It uses the teacher model as a fixed
discriminator to train a generator to generate the training data
used for distillation. Fang et al. [16] proposed a FastDFKD
that applied the idea of meta-learning to the training process
to accelerate the efficiency of data synthesis. We found that a
slight modification of the generator training method for such
methods can learn only the data distribution information and
ignore the data representation information.

Inspired by the above works, we propose a privacy-
preserving data-free distillation method. As shown in Fig. 1,
publishing a model (e.g., teacher model) trained directly from
private data would compromise privacy, so we treat it as a
fixed discriminator to train a generator in a data-free manner.
This generator learns only the data distribution to protect the
private data. Using this generator implicitly generates data for
the distillation process from teacher model to student model.
Because querying the teacher model using the generated syn-
thetic data can compromise private information, we propose a
LabelDP algorithm selective randomized response to protect
the output of the teacher model. The selective randomized
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Fig. 1. The framework of our differentially private data-free distillation approach. It aims to train a privacy-preserving student model S with teacher-student
learning. First, a teacher T is well trained on private data and serves as a fixed discriminator to pre-train a generator G in a data-free manner. Then, massive
synthetic data is generated from noisy code z with the generator and fed into the teacher and student S to query differentially private labels with selective
randomized response. Finally, with the synthetic data and noisy labels, the student is trained by regressing the teacher knowledge. In this way, both the data
privacy and label privacy are well protected in a unified framework, leading to a privacy-preserving student model S doing the distillation with final labels
and outputs of student. In the selective randomized response, we use the output of the student model combined with a threshold t to reduce the number of
possible labels and obtain I . We implement ε-DP with return RRε(I,yt) if correct label in I and Uniform(I) if correct label not in I .

response algorithm treats the output of the student model as
prior knowledge to reduce the possible output categories to
increase the probability of outputting the correct label, and
if the possible output does not contain the correct label, a
uniform probability distribution is used to reset the possible
probability of the output. In summary, our approach can ef-
fectively learn privacy-preserving student model by two keys.
On the one hand, our proposed data-free distillation is able
to protect privacy well with the learning of data distribution.
The generated synthetic data from this generator will not reveal
private information even if it is distributed. On the other hand
is that we propose the selective randomized response module
to implement DP, which is no longer limited by the number of
queries, and introduce the prediction of the student model as
prior knowledge for the randomized response. We increase the
probability of returning the correct label by setting a threshold,
so the student model can learn the knowledge of the teacher
model more effectively.

Our major contributions are three folds: 1) we propose a
differentially private data-free distillation approach to learn
privacy-preserving and high accurate student models via syn-
thetic data, 2) we propose selective randomized response
algorithm to privately distill teacher knowledge which pro-
vides strong protect label privacy protection in theory, and
3) we conduct extensive experiments and privacy analysis to
demonstrate the effectiveness of our approach.

II. APPROACH

A. Problem Formulation

Given a private dataset D, the goal is to train a student
model ϕs with privacy-preserving capabilities and its accuracy
close to the teacher model ϕt trained directly on D. To

achieve this goal, we propose a privacy-preserving differen-
tially private data-free distillation method. First, we train a
teacher model ϕt directly on D. Then, we use ϕt as a fixed
discriminator to train a generator ϕg that is used to generate
massive synthetic data D̃. We obtain predictions on D̃ by
querying the teacher model and apply the selective randomized
response function which follows ε-LabelDP on them to get
labels L. Finally, the student learning can be formulated by
minimizing an energy function E:

E(θs; D̃) = E(ϕs(θs; D̃),L) = E(ϕs(θs; D̃),R(ϕt(θt; D̃))),
(1)

where θs and θt are the parameters of the student and teacher,
respectively. R is selective randomized response function.

From Eq. 1, we can see that our approach can learn privacy-
preserving models by two main processes. First, the training
of student does not directly access the private data. Second,
the labels from the teacher are protected by the selective
randomized response module which implements ε-LabelDP.
Therefore, privacy leakage can be suppressed very effectively.
During training, the teacher knowledge is transferred to the
student through the label L. We solve Eq. 1 via two steps, in-
cluding: 1) data-free generator learning that trains a generator
ϕg with the pre-trained teacher ϕt as a fixed discriminator to
generate synthetic data D̃, and 2) student learning that applies
knowledge distillation is to label the synthetic data with ϕt and
selective randomized response function. And then use these
data-label pairs to train the student model ϕs and fine-tune
the generator ϕg . The detailed process is introduced in Alg. 1.

B. Data-Free Generator Learning
Directly using private data to train the generator will lead to

privacy leakage, while using public data will lead to a serious



Algorithm 1: Differentially Private Data-Free Distil-
lation (DP-DFD)

Input: Number of stages T ; Pre-trained teacher ϕt;
Initial student ϕ(0)

s ; Threshold t.
1 Training a generator ϕg with the teacher model ϕt as a

fixed discriminator in data-free manner.
2 For i = 1 to T :

a) Generate synthetic data D̃(i);
b) Compute yt and ys by entering D̃(i) into ϕt and ϕ

(i−1)
s ;

c) Let D̂(i) = [D̃(i),R(ys,yt, t)];
d) Train the student model ϕ(i)

s and fine-tune ϕg on D̂(i).

3 Return ϕ
(T )
s .

4 Function selective randomized response R:
Input: Output of student model ys; The teacher output

yt; Threshold t;
5 Select the set I of indexes with condition yis > t, and

k = |I| is the set size.
6 if |I| = 0 or |I| = 1 then
7 I = [index of top two largest elements in ys]

8 if argmax(yt) ∈ I then
9 Return yt with probability eε

eε+k−1 and the one-hot
type of other elements with probability 1

eε+k−1

10 else
11 Return the one-hot type of all elements in I with

probability 1
k

decrease in the accuracy of the student model obtained by
distillation, so we want to find a generator training method
that does not leak privacy and could match the distribution of
the private data. Inspired by [15], multi-class classifiers instead
of two-class classifiers as discriminators can better learn data
distribution, so we adopt a new training approach. We first
train a teacher model directly using the private data, and then
train a generator using that teacher model as a discriminator
with fixed parameters. At the heart of this idea is to take the
teacher as a bridge to indirectly learn the distribution of private
data. We optimize them by the following loss:

Lg(x̃) =ℓCE(ϕt(θt; x̃), argmax
j

(ϕt(θt; x̃))j)+

αϕt(θt; x̃) log ϕt(θt; x̃) + βN (ϕt, x̃),
(2)

where x̃ = ϕg(θg; z) generated by ϕg with parameters θg ,
z is a random vector, α and β are the tuning parameters to
balance the effect of three terms. The cross entropy ℓCE(·)
is used to enforce the outputs of the teacher model closer to
the one-hot labels. The smaller it is, the closer the synthetic
data distribution is to the private data. The second term is
the information entropy loss to measure the class balance of
synthetic data. The N (·) is l2-norm ||∗||2 to measure the mean
and variance of the total synthetic data and the running data
fed into the model. In this way, the synthetic data D̃ generated
by the trained generator has a similar distribution to private
data without compromising privacy.

C. Student Learning with Synthetic Data and Private Labels

During the training of the student model, we use randomized
response [18] for the sensitive labels to achieve DP. RRε

mechanism will return correct class label with the probability
eε

eε+K−1 , and return other labels with probability 1
eε+K−1 ,

where K is the number of classes. To improve the probability
of returning the true label without compromising privacy, we
introduce the student prediction ys and propose selective ran-
domized response algorithm. As shown in function selective
randomized response in Alg. 1, we first set a threshold t and
select the set of indexes I with condition yis > t. To ensure the
randomness of the output labels, we require that the number of
elements in I to be at least 2. We will set I to the set of indexes
of top two largest elements in ys if the number of elements
in I is less than 2. Let k be the number of I . If the teacher
model’s output in I , return the yt with the probability eε

eε+k−1
and return the one-hot type of other elements with probability

1
eε+k−1 (RRε(I,yt) in Fig. 1). If the teacher model’s output
not in I , return the one-hot type of the elements in I with
probability 1

k (Uniform(I) in Fig. 1).
For learning with LabelDP guarantee, we use selective

randomized response to randomized outputs from the teacher
model for each example of the synthetic data and then apply
a general learning algorithm that is robust to random label
noise to these data-label pairs. Unlike DPSGD and PATE,
which require the composition theorems to calculate the final
privacy budget ε, we query the random labels once and reuse
them in training process. At each stage i ∈ [T ], the synthetic
dataset D̃(i) is first generated using the generator ϕg and
then enter it into the most recent student model ϕ

(i−1)
s to

obtain ys as the prior knowledge. We run selective randomized
response algorithm with ys to obtain the label Li. We use
D̂(i) = {D̃(i),Li} to train the student model ϕ

(i)
s and fine

tune the generator ϕg . The loss function for the ith epoch is

L(i)
kd =

|D̂(i)|∑
j=1

ℓKL(ϕ
(i)
s (θs; x̃j), ỹj), s.t. (x̃j , ỹj) ∈ D̂(i), (3)

where ℓKL(·) represents the Kullback-Leibler divergence. For
the synthetic dataset D̃ = ∪T

i=1D̃(i), iff the size of dataset in
each stage is the same, their order will have no effect on the
accuracy of student, but T will affect the student accuracy.

In our approach, the private data first transfers the knowl-
edge to the teacher model. Directly publishing the teacher
model would lead to privacy leakage, so we use the teacher
model as a fixed discriminator to train a generator to generate a
non-sensitive synthetic dataset with the similar distribution to
the private data. We use this dataset to transfer the knowledge
from the teacher model to the student model. Because only the
predictions from the teacher model are sensitive, we protect the
predictions of the teacher model by implementing ε-LabelDP
through our propose selective randomized response module.
In this way, the knowledge of the private data is transferred to
the privacy-preserving student model without access through
a data-free distillation approach.



III. EXPERIMENTS

To verify the effectiveness of our differentially private data-
free distillation approach (DP-DFD), we conduct experiments
on five datasets and perform comprehensible comparisons
with 11 state-of-the-arts. To make the comparisons fair, our
experiments use the same settings as these approaches and
take the results from their original papers.

A. Experimental Setting

Datasets. The experiments are conducted on five datasets.
MNIST [19] and FashionMNIST (FMNIST) [20] are both 10-
class datasets for 28×28 gray handwritten number images and
fashion images, respectively. They includes 60K train exam-
ples and 10K test examples. CIFAR10 and CIFAR100 [21])
consists of 60K 32×32 color object images in 10 and 100 sub-
jects, where 50K for training and 10K for testing. CelebA [5]
contains 202,599 color facial images that are preprocessed
by aligning and resizing into 64 × 64. According to hair
color and gender attributes, we create two CelebA datasets,
CelebA-H and CelebA-G and they uses black/blonde/brown
and male/female as labels, respectively. We partition them into
training set and test set according to the official criteria [5].

Implementation. In all experiments, the structure of teacher is
Resnet34 and we set α and β in Eq. 2 as 5 and 10 respectively.
The structure of student is the same as [27] in data-sensitive
experiments and Resnet18 in label-sensitive experiments,
respectively. For each dataset, we set the threshold value to
1/(2∗nc) where nc is the number of classes. We evaluate the
test accuracy of student under privacy protection.

B. State-of-the-art Comparisons

Comparisons with data-sensitive approaches. First, we
compare with 7 data-sensitive approaches on MNIST, FM-
NIST, CelebA-H and CelebA-G under ε=1 and ε=10, in-
cluding DP-GAN [22], PATE-GAN [23], GS-WGAN [24]
and G-PATE [25], DP-MERF [26], DataLens [27] and DP-
Sinkhorn [28]. The results are shown in Tab. I. All other
approaches are under a failure probability δ = 10−5. The
accuracy of baseline model which trained directly using private
data is 99.21% on MNIST, 91.02% on FMNIST, 93.53% on
CelebA-G and 88.68% on CelebA-H. From Tab. I, we can
see that our DP-DFD shows substantially higher performance
than other approaches especially when ε = 1. In particular,
the accuracy of our DP-DFD outperforms the other best-
performing approaches by 21 percentage points. When ε = 10,
our DP-DFD also has an absolute advantage and is at least
13 percentage points higher than the other approaches. Even
for high-dimensional datasets like CelebA-G and CelebA-
H, our DP-DFD still shows the state-of-the-art performance,
which also demonstrates the advantage of DP-DFD over other
privacy-preserving approaches on high-dimensional datasets.

Comparisons with label-sensitive approaches. Then, we
compare with 4 LabelDP approaches (LP-MST [11], AL-
IBI [12], ClusterRR [14] and Protocol [13]) on MNIST,
FMNIST, CIFAR10 and CIFAR100 under the same ε. The

results are shown in Tab. II. We can find that our method
performs optimally for all four datasets and for different ε. In
particular, it achieves a correct rate of 74.67 when ε equals 8
on the CIFAR100 dataset, surpassing many methods that use
the raw data for direct distillation. The effectiveness of our
method is further demonstrated by the fact that our method
has higher performance than the other four methods trained
directly using raw data when there is no restriction on the
amount of generated synthetic data.

C. Ablation Studies

After the promising performance is achieved, we further
analyze each influencing factor in our approach, including the
impact of loss terms in the data-free generator learning, the
amount of synthetic data and the number of stages.

Loss function. To further understand the improvement of each
component of the loss function during data-free training of the
generator, we designed experiments on MNIST and FMNIST
under ε=10 to explore the contribution of each component.
The results are shown in Tab. III. where CE means the cross
entropy loss term, IE is the information entropy loss term and
Norm is the normalized term for the mean and variance of
the data. We can see that the normalization term of the data
has the greatest impact, followed by the information entry loss
term and finally the cross entropy loss term. We speculate that
this may be related to the randomness of the data generated by
the generator, which limits the distribution of the data to make
the generated synthetic data more usable, so it has a greater
impact on the accuracy of the student model.

Data amount. We further conducted experiments on MNIST,
FMNIST, CIAFR10 and CIFAR100 datasets under ε = 1. The
results are shown in Fig. 2. We found that MNIST dataset
converges at about 50,000 data volume, FMNIST converges
at about 120,000, CIFAR10 and CIFAR100 converge at about
220,000 and 500,000, respectively. As the difficulty of datasets
increases, the amount of data required to achieve convergence
increases. We suspect that this is because the more difficult the
dataset is, the more difficult its distribution knowledge is to
learn, so the larger the amount of data required. We note that
the CIFAR10 dataset is more difficult than FMNIST, but the
reason why CIFAR10’s final accuracy is similar to FMNIST’s
is that the network structure is different.

Number of stages. To explore the effect of the number
of stages, we conducted experiments on MNIST, FMNIST
and CIFAR10 datasets under ε=10. The results are shown
in Fig. 3. Experimental results show that between 20 and
320, the accuracy of the student model increases with the
increase of stages. As the classification difficulty of MNIST,
FMNIST and CIFAR10 datasets increases, the effect of stages
becomes greater. The experimental results are as we expected
because we used the prediction of the student model as the
prior knowledge. As the training process proceeds, the more
accurate the prediction of the student model becomes, which
means the higher the probability of outputting the correct label.



TABLE I
ACCURACY COMPARISONS WITH 7 DATA-SENSITIVE APPROACHES: TEST ACCURACY UNDER DIFFERENT PRIVACY BUDGET ε.

Dataset Baseline ε DP-GAN PATE-GAN G-PATE GS-WGAN DP-MERF DataLens DP-Sinkhorn DP-DFD

MNIST 0.9921 1 0.4036 0.4168 0.5810 0.1432 0.6500 0.7123 - 0.9762
10 0.8011 0.6667 0.8092 0.8075 0.6870 0.8066 0.8320 0.9856

FMNIST 0.9102 1 0.1053 0.4222 0.5567 0.1661 0.6100 0.6478 - 0.8917
10 0.6098 0.6218 0.6934 0.6579 0.6250 0.7061 0.7110 0.9074

CelebA-G 0.9353 1 0.5330 0.6068 0.6702 0.5901 - 0.7058 - 0.7814
10 0.5211 0.6535 0.6897 0.6136 0.6500 0.7287 0.7630 0.8934

CelebA-H 0.8868 1 0.3447 0.3789 0.4985 0.4203 - 0.6061 - 0.6753
10 0.3920 0.3900 0.6217 0.5225 - 0.6224 - 0.8207

TABLE II
ACCURACY COMPARISONS WITH 4 LABEL SENSITIVE APPROACHES: TEST

ACCURACY UNDER DIFFERENT PRIVACY BUDGET ε.

Dataset ε LP-2ST ALIBI ClusterRR Protocol DP-DFD

MNIST 1 0.9582 - 0.9000 - 0.9762

FMNIST 1 0.8326 - 0.8800 - 0.8917

CIFAR10 1 0.6367 0.8420 0.6857 - 0.8796
2 0.8605 - - 0.8184 0.8812

CIFAR100 3 0.2874 0.5500 - - 0.5861
8 0.7410 0.7440 - - 0.7467

TABLE III
IMPACT OF LOSS TERMS IN TRAINING GENERATOR UNDER ε=10.

Dataset CE IE Norm Accuracy

MNIST

0.9856
0.9655
0.9432
0.8801

The greater the percentage of synthetic data being correctly
labeled, the better the student model performance will be.

D. Privacy-Preserving Analysis

Data generation. To demonstrate that the direct use of syn-
thetic data in our approach doesn’t leak information of private
data, we visualize some examples for MNIST, FMNIST,
CIFAR10 and CelebA, as shown in Fig. 4. The first row
is MNIST, followed by FMNIST, CIFAR10, CelebA-G and
CelebA-H in that order. We found that even for the simplest
MNIST synthetic data, we could not semantically identify it
as a handwritten font. Despite its inability to be recognized
by humans, it has high utility in terms of training high
performance models. We also found something interesting:
such synthetic data can train a model that performs well, which
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raises an interesting question about what machine learning
models actually learn from data?

Model-inversion attack. We perform a model-inversion at-
tack [8] on a typical data-sensitive approach and a label-
sensitive approach to further demonstrate that our approach
can protect data privacy. The results are shown in Fig. 5.
The first row is the results of the attack on a typical data-



Fig. 4. The examples of the generated synthetic data. From top to bottom:
MNIST, FMNIST, CIFAR10, CelebA-G and CelebA-H.

Fig. 5. The results of model-inversion attack against the students trained on
MNIST with DataLens (top), ALIBI (middle) and DP-DFD (bottom).

sensitive method DataLens [27], while the second row shows
the results of the attack on a typical label-sensitive method
ALIBI [12]. The last row is the results of the attack on our
DP-DFD. We emphasize that the authors of [8] stress in their
original paper that differential privacy hardly works against
this attack method, but we can find that even for experiments
on the simplest MNIST dataset, our method still can defend
against this attack and protect the privacy of the private data.

IV. CONCLUSION

Typically, publishing deep learning models may pose the
risk of privacy leakage. To facilitate model deployment, we
propose a differentially private data-free distillation approach
(DP-DFD) that does not use private data in the training process
of publish model. This approach uses the teacher model trained
directly with private data as a bridge to transfer knowledge
from private data to publish model. The generator trained in
a data-free manner can learn the distribution of the private
data and enhance the knowledge of the publish model to
compensate for the loss of the accuracy without compromis-
ing privacy. In addition, we also provide differential privacy
analysis for our selective randomized response and DP-DFD
to demonstrate that it provides strong privacy guarantees in
theory. We have conducted extensive experiments and analyses
to show the effectiveness of our approach. In the future, we
will explore the approach in more practical applications, such
as federated learning on medical images and financial data.
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